Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Extreme Trips Durations | Working with Dates and Times in pandas
Dealing with Dates and Times in Python
course content

Kursinhalt

Dealing with Dates and Times in Python

Dealing with Dates and Times in Python

1. Working with Dates
2. Working with Times
3. Timezones and Daylight Savings Time (DST)
4. Working with Dates and Times in pandas

book
Challenge: Extreme Trips Durations

Now we have the respective columns converted into the correct type. It means now we can manipulate them using the learned methods.

We already have column trip_duration in our dataset, so why do we need to work with datetime objects? Yes, we have, but this number is in seconds, which is not readable at all (since there are 60 seconds in one minute, not 100). Let's see if there are outliers in our dataset.

Aufgabe

Swipe to start coding

  1. Create new column duration in df dataframe and save the result of subtracting dropoff_datetime and pickup_datetime columns.
  2. Sort the entire dataframe by newly created column in descending order. Save it in df_sort.
  3. Print the top-5 longest and shortest trips.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 4. Kapitel 3
toggle bottom row

book
Challenge: Extreme Trips Durations

Now we have the respective columns converted into the correct type. It means now we can manipulate them using the learned methods.

We already have column trip_duration in our dataset, so why do we need to work with datetime objects? Yes, we have, but this number is in seconds, which is not readable at all (since there are 60 seconds in one minute, not 100). Let's see if there are outliers in our dataset.

Aufgabe

Swipe to start coding

  1. Create new column duration in df dataframe and save the result of subtracting dropoff_datetime and pickup_datetime columns.
  2. Sort the entire dataframe by newly created column in descending order. Save it in df_sort.
  3. Print the top-5 longest and shortest trips.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 4. Kapitel 3
Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
Wir sind enttäuscht, dass etwas schief gelaufen ist. Was ist passiert?
some-alt