Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Fit a Spring's Oscillation Data | Data Analysis and Visualization in Physics
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Physics Students

bookChallenge: Fit a Spring's Oscillation Data

In this challenge, you will work with displacement versus time data collected from a spring-mass system in oscillation. Your goal is to fit a sinusoidal model to the data, visualize both the raw measurements and the fitted curve, and analyze the quality of your fit by examining the residuals. This exercise will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

Aufgabe

Swipe to start coding

Write a Python function to analyze spring-mass oscillation data by fitting a sinusoidal model and visualizing the results. This task will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

  • Write a function that takes two arrays as input: one for time data and one for measured displacement data from a spring-mass oscillation experiment.
  • Fit the displacement versus time data to the sinusoidal model defined as A * sin(omega * t + phi) + C, where:
    • A is the amplitude;
    • omega is the angular frequency;
    • phi is the phase offset;
    • C is the vertical offset.
  • Use the scipy.optimize.curve_fit function to fit the model to the data.
  • Use the following initial parameter guesses for curve fitting:
    • Amplitude (A): half the range of the displacement data;
    • Angular frequency (omega): 2.0;
    • Phase offset (phi): 0;
    • Vertical offset (C): mean of the displacement data.
  • Plot both the original measured data (as points) and the fitted curve (as a line) on the same graph using matplotlib.pyplot.
  • Compute the residuals as the difference between the measured displacement values and the fitted values at each time point.
  • Plot the residuals as a function of time on a separate graph.
  • Return the fitted parameters and the residuals from your function.
  • Ensure your code is clear and well-structured, and that your plots include appropriate labels and titles.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 5
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

bookChallenge: Fit a Spring's Oscillation Data

Swipe um das Menü anzuzeigen

In this challenge, you will work with displacement versus time data collected from a spring-mass system in oscillation. Your goal is to fit a sinusoidal model to the data, visualize both the raw measurements and the fitted curve, and analyze the quality of your fit by examining the residuals. This exercise will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

Aufgabe

Swipe to start coding

Write a Python function to analyze spring-mass oscillation data by fitting a sinusoidal model and visualizing the results. This task will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

  • Write a function that takes two arrays as input: one for time data and one for measured displacement data from a spring-mass oscillation experiment.
  • Fit the displacement versus time data to the sinusoidal model defined as A * sin(omega * t + phi) + C, where:
    • A is the amplitude;
    • omega is the angular frequency;
    • phi is the phase offset;
    • C is the vertical offset.
  • Use the scipy.optimize.curve_fit function to fit the model to the data.
  • Use the following initial parameter guesses for curve fitting:
    • Amplitude (A): half the range of the displacement data;
    • Angular frequency (omega): 2.0;
    • Phase offset (phi): 0;
    • Vertical offset (C): mean of the displacement data.
  • Plot both the original measured data (as points) and the fitted curve (as a line) on the same graph using matplotlib.pyplot.
  • Compute the residuals as the difference between the measured displacement values and the fitted values at each time point.
  • Plot the residuals as a function of time on a separate graph.
  • Return the fitted parameters and the residuals from your function.
  • Ensure your code is clear and well-structured, and that your plots include appropriate labels and titles.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 5
single

single

some-alt