Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Compare Convergence Speed | Scaling and Model Performance
Feature Scaling and Normalization in Python

bookChallenge: Compare Convergence Speed

Aufgabe

Swipe to start coding

You will simulate gradient descent on a simple linear regression problem to compare how feature scaling affects convergence speed.

Steps:

  1. Generate synthetic data X (one feature) and y using the relation y = 3 * X + noise.
  2. Implement a simple gradient descent function that minimizes MSE loss:
    def gradient_descent(X, y, lr, steps):
        w = 0.0
        history = []
        for _ in range(steps):
            grad = -2 * np.mean(X * (y - w * X))
            w -= lr * grad
            history.append(w)
        return np.array(history)
    
  3. Run gradient descent twice:
    • on the original X,
    • and on the standardized X_scaled = (X - mean) / std.
  4. Plot or print the loss decrease for both to see that scaling accelerates convergence.
  5. Compute and print final weights and losses for both cases.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 4. Kapitel 4
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

Awesome!

Completion rate improved to 5.26

bookChallenge: Compare Convergence Speed

Swipe um das Menü anzuzeigen

Aufgabe

Swipe to start coding

You will simulate gradient descent on a simple linear regression problem to compare how feature scaling affects convergence speed.

Steps:

  1. Generate synthetic data X (one feature) and y using the relation y = 3 * X + noise.
  2. Implement a simple gradient descent function that minimizes MSE loss:
    def gradient_descent(X, y, lr, steps):
        w = 0.0
        history = []
        for _ in range(steps):
            grad = -2 * np.mean(X * (y - w * X))
            w -= lr * grad
            history.append(w)
        return np.array(history)
    
  3. Run gradient descent twice:
    • on the original X,
    • and on the standardized X_scaled = (X - mean) / std.
  4. Plot or print the loss decrease for both to see that scaling accelerates convergence.
  5. Compute and print final weights and losses for both cases.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 4. Kapitel 4
single

single

some-alt