Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge | Polynomial Regression
Linear Regression for ML

Swipe um das Menü anzuzeigen

book
Challenge

In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
copy

Let's build a scatterplot of this data.

1234567
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4)
copy

Fitting a straight line to this data may not be a great choice.
The price gets higher for either brand-new or really old houses.
Fitting a parabola looks like a better choice. And that's what you will do in this challenge.

The task is to build a Polynomial Regression of degree 2 using a pipeline, as was shown in a previous chapter. Here is a list of the classes and functions from sklearn that you will need.

carousel-imgcarousel-imgcarousel-img
Aufgabe

Swipe to start coding

  1. Create a model using the make_pipeline function.
    As function arguments, pass the instances of classes that:
    • adds polynomial features of a degree n (don't forget to set the include_bias to False).
    • performs Linear Regression.
  2. Train the model.
  3. Predict the target for X_new.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 6

Fragen Sie AI

expand
ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

book
Challenge

In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
copy

Let's build a scatterplot of this data.

1234567
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4)
copy

Fitting a straight line to this data may not be a great choice.
The price gets higher for either brand-new or really old houses.
Fitting a parabola looks like a better choice. And that's what you will do in this challenge.

The task is to build a Polynomial Regression of degree 2 using a pipeline, as was shown in a previous chapter. Here is a list of the classes and functions from sklearn that you will need.

carousel-imgcarousel-imgcarousel-img
Aufgabe

Swipe to start coding

  1. Create a model using the make_pipeline function.
    As function arguments, pass the instances of classes that:
    • adds polynomial features of a degree n (don't forget to set the include_bias to False).
    • performs Linear Regression.
  2. Train the model.
  3. Predict the target for X_new.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 6
Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
Wir sind enttäuscht, dass etwas schief gelaufen ist. Was ist passiert?
some-alt