Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: TF-IDF | Grundlegende Textmodelle
Einführung in NLP

Swipe um das Menü anzuzeigen

book
Challenge: TF-IDF

Aufgabe

Swipe to start coding

You have a text corpus stored in corpus variable. Your task is to display the vector for the 'medical' unigram in a TF-IDF model with unigrams, bigrams, and trigrams. To do this:

  1. Import the TfidfVectorizer class to create a TF-IDF model.
  2. Instantiate the TfidfVectorizer class as tfidf_vectorizer and configure it to include unigrams, bigrams, and trigrams.
  3. Use the appropriate method of tfidf_vectorizer to generate a TF-IDF matrix from the 'Document' column in the corpus and store the result in tfidf_matrix.
  4. Convert tfidf_matrix to a dense array and create a DataFrame from it, setting the unique features (terms) as its columns. Store the result in the tfidf_matrix_df variable.
  5. Display the vector for 'medical' as an array.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 8
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

Awesome!

Completion rate improved to 3.45

book
Challenge: TF-IDF

Aufgabe

Swipe to start coding

You have a text corpus stored in corpus variable. Your task is to display the vector for the 'medical' unigram in a TF-IDF model with unigrams, bigrams, and trigrams. To do this:

  1. Import the TfidfVectorizer class to create a TF-IDF model.
  2. Instantiate the TfidfVectorizer class as tfidf_vectorizer and configure it to include unigrams, bigrams, and trigrams.
  3. Use the appropriate method of tfidf_vectorizer to generate a TF-IDF matrix from the 'Document' column in the corpus and store the result in tfidf_matrix.
  4. Convert tfidf_matrix to a dense array and create a DataFrame from it, setting the unique features (terms) as its columns. Store the result in the tfidf_matrix_df variable.
  5. Display the vector for 'medical' as an array.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

close

Awesome!

Completion rate improved to 3.45

Swipe um das Menü anzuzeigen

some-alt