Visualizing Correlations with Heatmaps
Correlation matrices can be overwhelming to interpret just by looking at numbers. Heatmaps provide a visual way to see the strength and direction of relationships between variables.
Why Use a Correlation Heatmap?
- Makes it easier to spot strong or weak correlations visually;
- Helps identify multicollinearity in your data;
- Uses color to communicate positive, negative, or neutral relationships;
- Especially useful when dealing with many numeric variables.
Creating the Correlation Matrix
# Select numeric columns
numeric_df <- df[, c("selling_price", "km_driven", "max_power", "mileage", "engine")]
# Compute correlation matrix
cor_matrix <- cor(numeric_df, use = "complete.obs")
View(cor_matrix)
Visualizing with ggcorrplot
ggcorrplot(cor_matrix,
method = "square",
type = "full",
lab = TRUE,
lab_size = 5,
colors = c("red", "white", "forestgreen"),
title = "Correlation Heatmap",
ggtheme = ggplot2::theme_light())
method = "square"
makes each cell a square block;lab = TRUE
overlays the correlation values on each block;colors
indicate direction: red (negative), white (neutral), green (positive);theme_light()
gives the plot a clean, minimal style
Summary
-
Use
cor()
to calculate relationships, andggcorrplot()
to visualize them; -
Color-coded matrices help you quickly grasp complex correlation patterns;
-
Always clean and convert your numeric columns before running correlation analysis.
Danke für Ihr Feedback!
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Awesome!
Completion rate improved to 4
Visualizing Correlations with Heatmaps
Swipe um das Menü anzuzeigen
Correlation matrices can be overwhelming to interpret just by looking at numbers. Heatmaps provide a visual way to see the strength and direction of relationships between variables.
Why Use a Correlation Heatmap?
- Makes it easier to spot strong or weak correlations visually;
- Helps identify multicollinearity in your data;
- Uses color to communicate positive, negative, or neutral relationships;
- Especially useful when dealing with many numeric variables.
Creating the Correlation Matrix
# Select numeric columns
numeric_df <- df[, c("selling_price", "km_driven", "max_power", "mileage", "engine")]
# Compute correlation matrix
cor_matrix <- cor(numeric_df, use = "complete.obs")
View(cor_matrix)
Visualizing with ggcorrplot
ggcorrplot(cor_matrix,
method = "square",
type = "full",
lab = TRUE,
lab_size = 5,
colors = c("red", "white", "forestgreen"),
title = "Correlation Heatmap",
ggtheme = ggplot2::theme_light())
method = "square"
makes each cell a square block;lab = TRUE
overlays the correlation values on each block;colors
indicate direction: red (negative), white (neutral), green (positive);theme_light()
gives the plot a clean, minimal style
Summary
-
Use
cor()
to calculate relationships, andggcorrplot()
to visualize them; -
Color-coded matrices help you quickly grasp complex correlation patterns;
-
Always clean and convert your numeric columns before running correlation analysis.
Danke für Ihr Feedback!