Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Visualizing Correlations with Heatmaps | Basic Statistical Analysis
Data Analysis with R

bookVisualizing Correlations with Heatmaps

Correlation matrices can be overwhelming to interpret just by looking at numbers. Heatmaps provide a visual way to see the strength and direction of relationships between variables.

Why Use a Correlation Heatmap?

  • Makes it easier to spot strong or weak correlations visually;
  • Helps identify multicollinearity in your data;
  • Uses color to communicate positive, negative, or neutral relationships;
  • Especially useful when dealing with many numeric variables.

Creating the Correlation Matrix

# Select numeric columns
numeric_df <- df[, c("selling_price", "km_driven", "max_power", "mileage", "engine")]
# Compute correlation matrix
cor_matrix <- cor(numeric_df, use = "complete.obs")
View(cor_matrix)

Visualizing with ggcorrplot

ggcorrplot(cor_matrix, 
           method = "square", 
           type = "full", 
           lab = TRUE, 
           lab_size = 5, 
           colors = c("red", "white", "forestgreen"),
           title = "Correlation Heatmap",
           ggtheme = ggplot2::theme_light())

  • method = "square" makes each cell a square block;
  • lab = TRUE overlays the correlation values on each block;
  • colors indicate direction: red (negative), white (neutral), green (positive);
  • theme_light() gives the plot a clean, minimal style

Summary

  • Use cor() to calculate relationships, and ggcorrplot() to visualize them;

  • Color-coded matrices help you quickly grasp complex correlation patterns;

  • Always clean and convert your numeric columns before running correlation analysis.

question mark

Which function from the ggcorrplot package is used to visualize correlations?

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 6

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Awesome!

Completion rate improved to 4

bookVisualizing Correlations with Heatmaps

Swipe um das Menü anzuzeigen

Correlation matrices can be overwhelming to interpret just by looking at numbers. Heatmaps provide a visual way to see the strength and direction of relationships between variables.

Why Use a Correlation Heatmap?

  • Makes it easier to spot strong or weak correlations visually;
  • Helps identify multicollinearity in your data;
  • Uses color to communicate positive, negative, or neutral relationships;
  • Especially useful when dealing with many numeric variables.

Creating the Correlation Matrix

# Select numeric columns
numeric_df <- df[, c("selling_price", "km_driven", "max_power", "mileage", "engine")]
# Compute correlation matrix
cor_matrix <- cor(numeric_df, use = "complete.obs")
View(cor_matrix)

Visualizing with ggcorrplot

ggcorrplot(cor_matrix, 
           method = "square", 
           type = "full", 
           lab = TRUE, 
           lab_size = 5, 
           colors = c("red", "white", "forestgreen"),
           title = "Correlation Heatmap",
           ggtheme = ggplot2::theme_light())

  • method = "square" makes each cell a square block;
  • lab = TRUE overlays the correlation values on each block;
  • colors indicate direction: red (negative), white (neutral), green (positive);
  • theme_light() gives the plot a clean, minimal style

Summary

  • Use cor() to calculate relationships, and ggcorrplot() to visualize them;

  • Color-coded matrices help you quickly grasp complex correlation patterns;

  • Always clean and convert your numeric columns before running correlation analysis.

question mark

Which function from the ggcorrplot package is used to visualize correlations?

Select the correct answer

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 6
some-alt