Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Clean Messy Reviews | Advanced Text Cleaning
Data Cleaning Techniques in Python

bookChallenge: Clean Messy Reviews

Aufgabe

Swipe to start coding

You are given a list of customer review texts in the variable reviews. The reviews may contain emojis, hashtags, repeated characters, noise words, punctuation, and informal expressions.

Your goal is to create a normalized version of each review using several NLP cleaning steps.

Follow these steps:

  1. Convert each review to lowercase.
  2. Remove emojis, hashtags, and mentions using a regular expression.
  3. Normalize repeated characters: any character repeated 3 or more times should be reduced to a single instance (cooooolcool).
  4. Tokenize each review using nltk.word_tokenize().
  5. Remove stopwords using the provided stopwords list.
  6. Apply stemming to the remaining tokens using PorterStemmer.
  7. Store each cleaned review (joined back with spaces) in a list named cleaned_reviews.

Make sure the variable cleaned_reviews is declared and contains all normalized reviews in the correct order.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 4. Kapitel 3
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Can you explain this in simpler terms?

What are some examples related to this topic?

Where can I learn more about this?

close

bookChallenge: Clean Messy Reviews

Swipe um das Menü anzuzeigen

Aufgabe

Swipe to start coding

You are given a list of customer review texts in the variable reviews. The reviews may contain emojis, hashtags, repeated characters, noise words, punctuation, and informal expressions.

Your goal is to create a normalized version of each review using several NLP cleaning steps.

Follow these steps:

  1. Convert each review to lowercase.
  2. Remove emojis, hashtags, and mentions using a regular expression.
  3. Normalize repeated characters: any character repeated 3 or more times should be reduced to a single instance (cooooolcool).
  4. Tokenize each review using nltk.word_tokenize().
  5. Remove stopwords using the provided stopwords list.
  6. Apply stemming to the remaining tokens using PorterStemmer.
  7. Store each cleaned review (joined back with spaces) in a list named cleaned_reviews.

Make sure the variable cleaned_reviews is declared and contains all normalized reviews in the correct order.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 4. Kapitel 3
single

single

some-alt