Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Random Forest | Bagging and Random Forests
Ensemble Learning Techniques with Python

bookChallenge: Random Forest

Aufgabe

Swipe to start coding

Train and evaluate a Random Forest Classifier on the Iris dataset. Your task is to:

  1. Load the dataset using sklearn.datasets.load_iris().
  2. Split the data into training and testing sets (test_size=0.3, random_state=42).
  3. Train a RandomForestClassifier with:
    • n_estimators=100,
    • max_depth=4,
    • random_state=42.
  4. Predict labels on the test set.
  5. Compute and print the accuracy score of your model.
  6. Store the trained model in a variable named rf_model and predictions in y_pred.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 4
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

bookChallenge: Random Forest

Swipe um das Menü anzuzeigen

Aufgabe

Swipe to start coding

Train and evaluate a Random Forest Classifier on the Iris dataset. Your task is to:

  1. Load the dataset using sklearn.datasets.load_iris().
  2. Split the data into training and testing sets (test_size=0.3, random_state=42).
  3. Train a RandomForestClassifier with:
    • n_estimators=100,
    • max_depth=4,
    • random_state=42.
  4. Predict labels on the test set.
  5. Compute and print the accuracy score of your model.
  6. Store the trained model in a variable named rf_model and predictions in y_pred.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 4
single

single

some-alt