Bagging and Bootstrap Sampling
Bagging, short for bootstrap aggregation, is an ensemble technique that builds multiple models—most commonly decision trees—by training each model on a different random sample of the data. These samples are drawn with replacement, a process known as bootstrap sampling.
Bootstrap sampling is a statistical method where samples are drawn from the dataset with replacement, allowing the same data point to appear multiple times in a sample.
Decision tree is a tree-structured model used for classification or regression, where each internal node splits the data based on a feature.
By averaging the predictions of these models, bagging reduces variance and increases stability, particularly for high-variance models such as DecisionTreeClassifier. This averaging effect means that while individual models might overfit to their specific bootstrap samples, their combined output is more robust and less sensitive to the quirks of any single sample.
Danke für Ihr Feedback!
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Großartig!
Completion Rate verbessert auf 7.14
Bagging and Bootstrap Sampling
Swipe um das Menü anzuzeigen
Bagging, short for bootstrap aggregation, is an ensemble technique that builds multiple models—most commonly decision trees—by training each model on a different random sample of the data. These samples are drawn with replacement, a process known as bootstrap sampling.
Bootstrap sampling is a statistical method where samples are drawn from the dataset with replacement, allowing the same data point to appear multiple times in a sample.
Decision tree is a tree-structured model used for classification or regression, where each internal node splits the data based on a feature.
By averaging the predictions of these models, bagging reduces variance and increases stability, particularly for high-variance models such as DecisionTreeClassifier. This averaging effect means that while individual models might overfit to their specific bootstrap samples, their combined output is more robust and less sensitive to the quirks of any single sample.
Danke für Ihr Feedback!