Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Explore Dataset | Model Building
Principal Component Analysis
course content

Kursinhalt

Principal Component Analysis

Principal Component Analysis

1. What is Principal Component Analysis
2. Basic Concepts of PCA
3. Model Building
4. Results Analysis

book
Explore Dataset

Now we will take a closer look at the creation of a PCA model using the example of one dataset. As a dataset, we will use wine from the scikit-learn set. It contains 13 wine characteristics and 3 classes. It is especially convenient for us because there are no categorical variables in it.

Let's load the dataset:

Now let's explore the dataset to understand what data we are working with. Let's convert the numpy array X to a pandas dataframe and check the amount of missing data:

To get a complete description of each column (mean, standard deviation, etc.), use the .describe() method:

Before loading the dataset into the PCA model, let's process our data. Based on the previous lessons, you may have noticed that an important step is data standardization. We implement this using the StandardScaler() class:

Aufgabe

Swipe to start coding

Read the data from the train.csv (from web) file. Remove the "Id" column from the dataset and standardize it.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 2
toggle bottom row

book
Explore Dataset

Now we will take a closer look at the creation of a PCA model using the example of one dataset. As a dataset, we will use wine from the scikit-learn set. It contains 13 wine characteristics and 3 classes. It is especially convenient for us because there are no categorical variables in it.

Let's load the dataset:

Now let's explore the dataset to understand what data we are working with. Let's convert the numpy array X to a pandas dataframe and check the amount of missing data:

To get a complete description of each column (mean, standard deviation, etc.), use the .describe() method:

Before loading the dataset into the PCA model, let's process our data. Based on the previous lessons, you may have noticed that an important step is data standardization. We implement this using the StandardScaler() class:

Aufgabe

Swipe to start coding

Read the data from the train.csv (from web) file. Remove the "Id" column from the dataset and standardize it.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 2
Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
We're sorry to hear that something went wrong. What happened?
some-alt