Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Standardization | Basic Concepts of PCA
Principal Component Analysis
course content

Kursinhalt

Principal Component Analysis

Principal Component Analysis

1. What is Principal Component Analysis
2. Basic Concepts of PCA
3. Model Building
4. Results Analysis

book
Standardization

Finally, let's start with the analysis of the PCA mathematical model.

First of all, we start by standardizing the data that the algorithm will work with. By standardization is meant the reduction of all continuous variables to a set where the mean will be equal to 0.

This is an important step because PCA cannot work properly if there is a variable in the dataset with a range of values ​​0-20 and 100-10,000, for example. PCA will start to "ignore" the characteristic with a small spread (0-20) and it will not be able to affect the result of the algorithm.

The formula for data standardization is very simple. Subtract the mean from the value of the variable and divide the result by the standard deviation:

The scikit-learn Python library allows us to do this in 1 line:

Aufgabe

Swipe to start coding

Implement standardization of X array using the numpy functions np.mean() and np.std().

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 1
toggle bottom row

book
Standardization

Finally, let's start with the analysis of the PCA mathematical model.

First of all, we start by standardizing the data that the algorithm will work with. By standardization is meant the reduction of all continuous variables to a set where the mean will be equal to 0.

This is an important step because PCA cannot work properly if there is a variable in the dataset with a range of values ​​0-20 and 100-10,000, for example. PCA will start to "ignore" the characteristic with a small spread (0-20) and it will not be able to affect the result of the algorithm.

The formula for data standardization is very simple. Subtract the mean from the value of the variable and divide the result by the standard deviation:

The scikit-learn Python library allows us to do this in 1 line:

Aufgabe

Swipe to start coding

Implement standardization of X array using the numpy functions np.mean() and np.std().

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 1
Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
We're sorry to hear that something went wrong. What happened?
some-alt