Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Covariance Matrix | Basic Concepts of PCA
Principal Component Analysis
course content

Kursinhalt

Principal Component Analysis

Principal Component Analysis

1. What is Principal Component Analysis
2. Basic Concepts of PCA
3. Model Building
4. Results Analysis

book
Covariance Matrix

The next step is to create a covariance matrix. Why are we doing this? The covariance matrix allows us to see the relationship between variables in the dataset. If some variables have a strong correlation with each other, this will allow us to avoid redundant information in the next step. This is the meaning of the PCA algorithm: to make the differences between variables more pronounced, and to get rid of information overload.

The covariance matrix is a symmetric matrix of the form nxn, where n - is the total number of measurements, i.e. variables that we have in the dataset. If we have 5 variables: x1, x2, x3, x4, x5, then the covariance matrix 5x5 will look like this:

Pay attention to the sign of the covariance values: if it is positive, then the variables are correlated with each other (when one increases or decreases, the second also), if it is negative, then the variables have an inverse correlation (when one increases, the second decreases and vice versa).

Let's use numpy to calculate the covariance matrix:

Aufgabe

Swipe to start coding

Read the dataset from the train.csv file (from web), standartize the data, calculate the covariance matrix, and display it.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 2
toggle bottom row

book
Covariance Matrix

The next step is to create a covariance matrix. Why are we doing this? The covariance matrix allows us to see the relationship between variables in the dataset. If some variables have a strong correlation with each other, this will allow us to avoid redundant information in the next step. This is the meaning of the PCA algorithm: to make the differences between variables more pronounced, and to get rid of information overload.

The covariance matrix is a symmetric matrix of the form nxn, where n - is the total number of measurements, i.e. variables that we have in the dataset. If we have 5 variables: x1, x2, x3, x4, x5, then the covariance matrix 5x5 will look like this:

Pay attention to the sign of the covariance values: if it is positive, then the variables are correlated with each other (when one increases or decreases, the second also), if it is negative, then the variables have an inverse correlation (when one increases, the second decreases and vice versa).

Let's use numpy to calculate the covariance matrix:

Aufgabe

Swipe to start coding

Read the dataset from the train.csv file (from web), standartize the data, calculate the covariance matrix, and display it.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 2
Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
We're sorry to hear that something went wrong. What happened?
some-alt