Implementing Integrals in Python
Integration is the process of summing infinitely small parts to find the total accumulation of a function over a range. In Python, we use sympy
to compute integrals symbolically.
Computing an Indefinite Integral (Antiderivative)
An indefinite integral represents the antiderivative of a function. It finds the general form of a function whose derivative gives the original function.
1234567891011import sympy as sp # Define function x = sp.Symbol('x') f = x**2 # Compute indefinite integral F = sp.integrate(f, x) # Output: x**3 / 3 print(F)
Computing a Definite Integral (Area Under Curve)
A definite integral finds the accumulated sum of a function over a range [a,b].
1234567891011121314import sympy as sp # Define function x = sp.Symbol('x') f = x**2 # Define integration limits a, b = 0, 2 # Compute definite integral integral_value = sp.integrate(f, (x, a, b)) # Output: 4/3 * (2^3 - 0^3) = 4 print(integral_value)
Common Integrals in Python
Python allows us to compute common mathematical integrals symbolically. Here are a few examples:
123456789101112131415161718import sympy as sp # Define function x = sp.Symbol('x') # Exponential integral exp_integral = sp.integrate(sp.exp(x), x) # Sigmoid function integral sigmoid_integral = sp.integrate(1 / (1 + sp.exp(-x)), x) # Quadratic function integral quadratic_integral = sp.integrate(2*x, (x, 0, 2)) # Print results print(exp_integral) # Output: e^x print(sigmoid_integral) # Output: log(1 + e^x) print(quadratic_integral) # Output: 4
1. What is the result of this integral?
2. What happens when you integrate a constant, such as 5
?
Danke für Ihr Feedback!
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Awesome!
Completion rate improved to 1.89
Implementing Integrals in Python
Swipe um das Menü anzuzeigen
Integration is the process of summing infinitely small parts to find the total accumulation of a function over a range. In Python, we use sympy
to compute integrals symbolically.
Computing an Indefinite Integral (Antiderivative)
An indefinite integral represents the antiderivative of a function. It finds the general form of a function whose derivative gives the original function.
1234567891011import sympy as sp # Define function x = sp.Symbol('x') f = x**2 # Compute indefinite integral F = sp.integrate(f, x) # Output: x**3 / 3 print(F)
Computing a Definite Integral (Area Under Curve)
A definite integral finds the accumulated sum of a function over a range [a,b].
1234567891011121314import sympy as sp # Define function x = sp.Symbol('x') f = x**2 # Define integration limits a, b = 0, 2 # Compute definite integral integral_value = sp.integrate(f, (x, a, b)) # Output: 4/3 * (2^3 - 0^3) = 4 print(integral_value)
Common Integrals in Python
Python allows us to compute common mathematical integrals symbolically. Here are a few examples:
123456789101112131415161718import sympy as sp # Define function x = sp.Symbol('x') # Exponential integral exp_integral = sp.integrate(sp.exp(x), x) # Sigmoid function integral sigmoid_integral = sp.integrate(1 / (1 + sp.exp(-x)), x) # Quadratic function integral quadratic_integral = sp.integrate(2*x, (x, 0, 2)) # Print results print(exp_integral) # Output: e^x print(sigmoid_integral) # Output: log(1 + e^x) print(quadratic_integral) # Output: 4
1. What is the result of this integral?
2. What happens when you integrate a constant, such as 5
?
Danke für Ihr Feedback!