Implementing Eigenvectors & Eigenvalues in Python
Eigenvalues and eigenvectors are fundamental in linear algebra and arise in many data science applications — from PCA and dimensionality reduction to understanding systems dynamics and optimization.
They allow us to understand how matrices stretch or rotate vectors in space.
Defining the Matrix
# Define matrix A (square matrix)
A = np.array([[2, 1],
[1, 2]])
This matrix represents a symmetric 2×2 system. We're going to analyze its properties through decomposition.
Computing Eigenvalues and Eigenvectors
12345678910111213import numpy as np from numpy.linalg import eig # Define matrix A (square matrix) A = np.array([[2, 1], [1, 2]]) # Solve for eigenvalues and eigenvectors eigenvalues, eigenvectors = eig(A) # Print eigenvalues and eigenvectors print(eigenvalues) print(eigenvectors)
NumPy's eig()
computes the solutions to the equation:
eigenvalues
: a list of scalars $\lambda$ that scale eigenvectors;eigenvectors
: columns representing $v$ (directions that don’t change under transformation).
Validating Each Pair (Key Step)
12345678910111213141516import numpy as np from numpy.linalg import eig # Define matrix A (square matrix) A = np.array([[2, 1], [1, 2]]) # Solve for eigenvalues and eigenvectors eigenvalues, eigenvectors = eig(A) # Verify that A @ v = λ * v for each eigenpair for i in range(len(eigenvalues)): λ = eigenvalues[i] v = eigenvectors[:, i].reshape(-1, 1) print(A @ v) print(λ * v)
This checks if:
Av=λvThe two sides should match closely, which confirms correctness. This is how we validate theoretical properties numerically.
1. What does np.linalg.eig(A)
return?
2. Which equation defines eigenvectors and eigenvalues?
3. What is the geometric interpretation of an eigenvector?
4. Why do we check Av=λv for each pair?
5. What happens if matrix A has complex eigenvalues?
Danke für Ihr Feedback!
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Can you explain what eigenvalues and eigenvectors represent in simple terms?
How do I interpret the output of the eigenvalues and eigenvectors in this example?
Can you walk me through the validation step in more detail?
Awesome!
Completion rate improved to 1.89
Implementing Eigenvectors & Eigenvalues in Python
Swipe um das Menü anzuzeigen
Eigenvalues and eigenvectors are fundamental in linear algebra and arise in many data science applications — from PCA and dimensionality reduction to understanding systems dynamics and optimization.
They allow us to understand how matrices stretch or rotate vectors in space.
Defining the Matrix
# Define matrix A (square matrix)
A = np.array([[2, 1],
[1, 2]])
This matrix represents a symmetric 2×2 system. We're going to analyze its properties through decomposition.
Computing Eigenvalues and Eigenvectors
12345678910111213import numpy as np from numpy.linalg import eig # Define matrix A (square matrix) A = np.array([[2, 1], [1, 2]]) # Solve for eigenvalues and eigenvectors eigenvalues, eigenvectors = eig(A) # Print eigenvalues and eigenvectors print(eigenvalues) print(eigenvectors)
NumPy's eig()
computes the solutions to the equation:
eigenvalues
: a list of scalars $\lambda$ that scale eigenvectors;eigenvectors
: columns representing $v$ (directions that don’t change under transformation).
Validating Each Pair (Key Step)
12345678910111213141516import numpy as np from numpy.linalg import eig # Define matrix A (square matrix) A = np.array([[2, 1], [1, 2]]) # Solve for eigenvalues and eigenvectors eigenvalues, eigenvectors = eig(A) # Verify that A @ v = λ * v for each eigenpair for i in range(len(eigenvalues)): λ = eigenvalues[i] v = eigenvectors[:, i].reshape(-1, 1) print(A @ v) print(λ * v)
This checks if:
Av=λvThe two sides should match closely, which confirms correctness. This is how we validate theoretical properties numerically.
1. What does np.linalg.eig(A)
return?
2. Which equation defines eigenvectors and eigenvalues?
3. What is the geometric interpretation of an eigenvector?
4. Why do we check Av=λv for each pair?
5. What happens if matrix A has complex eigenvalues?
Danke für Ihr Feedback!