Implementing Probability Basics in Python
Probability concepts are the foundation of analyzing uncertain events.
Here we learn how to compute union and intersection using a simple dice example.
Defining Sample Space and Events
# Small numbers on a die
A = {1, 2, 3}
# Even numbers on a die
B = {2, 4, 6}
die_outcomes = 6
Here we define:
- A={1,2,3} representing "small" outcomes;
- B={2,4,6} representing "even" outcomes.
The total number of die outcomes is 6.
Performing Set Operations
12345678# Small numbers on a die A = {1, 2, 3} # Even numbers on a die B = {2, 4, 6} die_outcomes = 6 print(f'A and B = {A & B}') # {2} print(f'A or B = {A | B}') # {1, 2, 3, 4, 6}
- The intersection A∩B={2} → common element.
- The union A∪B={1,2,3,4,6} → all elements in A or B.
Calculating Probabilities
123456789101112131415161718# Small numbers on a die A = {1, 2, 3} # Even numbers on a die B = {2, 4, 6} die_outcomes = 6 A_and_B = A & B # {2} A_or_B = A | B # {1, 2, 3, 4, 6} P_A = len(A) / die_outcomes P_B = len(B) / die_outcomes P_A_and_B = len(A_and_B) / die_outcomes P_A_or_B = P_A + P_B - P_A_and_B print("P(A) =", P_A) print("P(B) =", P_B) print("P(A ∩ B) =", P_A_and_B) print("P(A ∪ B) =", P_A_or_B)
We use the formulas:
- P(A)=6∣A∣=63;
- P(B)=6∣B∣=63;
- P(A∩B)=6∣A∩B∣=61;
- P(A∪B)=P(A)+P(B)−P(A∩B)=65.
Additional Set Details
12345only_A = A - B # {1, 3} only_B = B - A # {4, 6} print(only_A) print(only_B)
- Elements only in A: {1, 3};
- Elements only in B: {4, 6}.
1. What is the output of this code?
2. What does this line compute?
3. What is the result of this code?
4. Which line correctly calculates the union probability using Python?
5. What does this code return?
Danke für Ihr Feedback!
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Can you explain the inclusion-exclusion principle in more detail?
How do you visualize the union and intersection using a Venn diagram?
What happens if the two events are mutually exclusive?
Awesome!
Completion rate improved to 1.89
Implementing Probability Basics in Python
Swipe um das Menü anzuzeigen
Probability concepts are the foundation of analyzing uncertain events.
Here we learn how to compute union and intersection using a simple dice example.
Defining Sample Space and Events
# Small numbers on a die
A = {1, 2, 3}
# Even numbers on a die
B = {2, 4, 6}
die_outcomes = 6
Here we define:
- A={1,2,3} representing "small" outcomes;
- B={2,4,6} representing "even" outcomes.
The total number of die outcomes is 6.
Performing Set Operations
12345678# Small numbers on a die A = {1, 2, 3} # Even numbers on a die B = {2, 4, 6} die_outcomes = 6 print(f'A and B = {A & B}') # {2} print(f'A or B = {A | B}') # {1, 2, 3, 4, 6}
- The intersection A∩B={2} → common element.
- The union A∪B={1,2,3,4,6} → all elements in A or B.
Calculating Probabilities
123456789101112131415161718# Small numbers on a die A = {1, 2, 3} # Even numbers on a die B = {2, 4, 6} die_outcomes = 6 A_and_B = A & B # {2} A_or_B = A | B # {1, 2, 3, 4, 6} P_A = len(A) / die_outcomes P_B = len(B) / die_outcomes P_A_and_B = len(A_and_B) / die_outcomes P_A_or_B = P_A + P_B - P_A_and_B print("P(A) =", P_A) print("P(B) =", P_B) print("P(A ∩ B) =", P_A_and_B) print("P(A ∪ B) =", P_A_or_B)
We use the formulas:
- P(A)=6∣A∣=63;
- P(B)=6∣B∣=63;
- P(A∩B)=6∣A∩B∣=61;
- P(A∪B)=P(A)+P(B)−P(A∩B)=65.
Additional Set Details
12345only_A = A - B # {1, 3} only_B = B - A # {4, 6} print(only_A) print(only_B)
- Elements only in A: {1, 3};
- Elements only in B: {4, 6}.
1. What is the output of this code?
2. What does this line compute?
3. What is the result of this code?
4. Which line correctly calculates the union probability using Python?
5. What does this code return?
Danke für Ihr Feedback!