Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Quality Control Sampling | Probability & Statistics
Mathematics for Data Science

bookChallenge: Quality Control Sampling

You are the quality control manager at a rod manufacturing factory. You need to simulate measurements and defect counts using three different probability distributions to model your production process:

  • Normal distribution for rod weights (continuous);
  • Binomial distribution for the number of defective rods in batches (discrete);
  • Uniform distribution for rod length tolerances (continuous).
Note
Note

Your task is to translate the formulas and concepts from your lecture into Python code. You must NOT use built-in numpy random sampling functions (e.g., np.random.normal) or any other library's direct sampling methods for the distributions. Instead, implement sample generation manually using the underlying principles and basic Python (e.g., random.random(), random.gauss()).

Formulas to Use

Normal distribution PDF:

f(x)=1σ2πe(xμ)22σ2f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x - \mu)^2}{2\sigma^2}}

Standard deviation from variance:

σ=variance\sigma = \sqrt{\text{variance}}

Binomial distribution PMF:

P(X=k)=(nk)nk(1n)nk,where(nk)=n!k!(nk)!P(X = k) = \begin{pmatrix}n\\k\end{pmatrix}n^k(1-n)^{n-k},\quad \text{where}\begin{pmatrix}n\\k\end{pmatrix} = \frac{n!}{k!(n-k)!}

Uniform distribution PDF:

f(x)=1baforaxbf(x) = \frac{1}{b-a}\quad \text{for}\quad a \le x \le b
Aufgabe

Swipe to start coding

  1. Complete the starter code below by filling in the blanks (____) using the concepts/formulas above.
  2. Use only random and math modules.
  3. Implement three functions to generate 1000 samples from each distribution (Normal: using random.gauss(); Binomial: simulating n Bernoulli trials; Uniform: scaling random.random()).
  4. Plot histograms for each distribution (plotting code given, just complete the sampling functions and parameters).
  5. Retain all comments exactly as shown, they explain each step.
  6. No use of numpy random functions or external sampling libraries.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 5. Kapitel 12
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Can you explain how to use these distributions for simulating the production process?

What are typical parameter values for each distribution in this context?

Can you provide an example of how to calculate probabilities using these formulas?

close

Awesome!

Completion rate improved to 1.89

bookChallenge: Quality Control Sampling

Swipe um das Menü anzuzeigen

You are the quality control manager at a rod manufacturing factory. You need to simulate measurements and defect counts using three different probability distributions to model your production process:

  • Normal distribution for rod weights (continuous);
  • Binomial distribution for the number of defective rods in batches (discrete);
  • Uniform distribution for rod length tolerances (continuous).
Note
Note

Your task is to translate the formulas and concepts from your lecture into Python code. You must NOT use built-in numpy random sampling functions (e.g., np.random.normal) or any other library's direct sampling methods for the distributions. Instead, implement sample generation manually using the underlying principles and basic Python (e.g., random.random(), random.gauss()).

Formulas to Use

Normal distribution PDF:

f(x)=1σ2πe(xμ)22σ2f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x - \mu)^2}{2\sigma^2}}

Standard deviation from variance:

σ=variance\sigma = \sqrt{\text{variance}}

Binomial distribution PMF:

P(X=k)=(nk)nk(1n)nk,where(nk)=n!k!(nk)!P(X = k) = \begin{pmatrix}n\\k\end{pmatrix}n^k(1-n)^{n-k},\quad \text{where}\begin{pmatrix}n\\k\end{pmatrix} = \frac{n!}{k!(n-k)!}

Uniform distribution PDF:

f(x)=1baforaxbf(x) = \frac{1}{b-a}\quad \text{for}\quad a \le x \le b
Aufgabe

Swipe to start coding

  1. Complete the starter code below by filling in the blanks (____) using the concepts/formulas above.
  2. Use only random and math modules.
  3. Implement three functions to generate 1000 samples from each distribution (Normal: using random.gauss(); Binomial: simulating n Bernoulli trials; Uniform: scaling random.random()).
  4. Plot histograms for each distribution (plotting code given, just complete the sampling functions and parameters).
  5. Retain all comments exactly as shown, they explain each step.
  6. No use of numpy random functions or external sampling libraries.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

close

Awesome!

Completion rate improved to 1.89
Abschnitt 5. Kapitel 12
single

single

some-alt