Evaluation Before and After Calibration
Swipe to start coding
In this challenge, you will evaluate a classifier before and after probability calibration. You will train a logistic regression classifier on a binary dataset, compute predicted probabilities, and measure:
- Brier score
- Expected Calibration Error (ECE)
- Calibration curve points
You will then apply isotonic regression calibration using CalibratedClassifierCV, recompute the same metrics, and compare the results.
Your goal:
-
Train a logistic regression classifier on the dataset.
-
Generate uncalibrated predicted probabilities.
-
Apply isotonic calibration using
CalibratedClassifierCV. -
Compute Brier score and a simple ECE metric before and after calibration.
-
Print the results as two values:
brier_before,brier_afterece_before,ece_after
Lösung
Danke für Ihr Feedback!
single
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Can you explain this in simpler terms?
What are the main points I should remember?
Can you give me an example?
Großartig!
Completion Rate verbessert auf 6.67
Evaluation Before and After Calibration
Swipe um das Menü anzuzeigen
Swipe to start coding
In this challenge, you will evaluate a classifier before and after probability calibration. You will train a logistic regression classifier on a binary dataset, compute predicted probabilities, and measure:
- Brier score
- Expected Calibration Error (ECE)
- Calibration curve points
You will then apply isotonic regression calibration using CalibratedClassifierCV, recompute the same metrics, and compare the results.
Your goal:
-
Train a logistic regression classifier on the dataset.
-
Generate uncalibrated predicted probabilities.
-
Apply isotonic calibration using
CalibratedClassifierCV. -
Compute Brier score and a simple ECE metric before and after calibration.
-
Print the results as two values:
brier_before,brier_afterece_before,ece_after
Lösung
Danke für Ihr Feedback!
single