Visualizing Maps with GeoPandas
Visualizing geospatial data is a fundamental skill in geospatial data science, enabling you to explore spatial patterns, communicate results, and make informed decisions. With GeoPandas, you can quickly create maps from your spatial datasets and customize their appearance using the powerful plotting capabilities of matplotlib. GeoPandas integrates seamlessly with matplotlib, allowing you to plot points, lines, and polygons directly from a GeoDataFrame. By adjusting colors, edge styles, and overlays, you can highlight important features and make your maps more informative and visually appealing.
1234567891011121314151617181920212223import geopandas as gpd import matplotlib.pyplot as plt from shapely.geometry import Polygon # Create a GeoDataFrame with polygon geometries polygons = [ Polygon([(0, 0), (2, 0), (2, 2), (0, 2)]), Polygon([(2, 0), (4, 0), (4, 2), (2, 2)]), Polygon([(0, 2), (2, 2), (2, 4), (0, 4)]), ] gdf = gpd.GeoDataFrame({'geometry': polygons, 'name': ['A', 'B', 'C']}) # Plot polygons with custom face colors and edge styles ax = gdf.plot( color=['lightblue', 'lightgreen', 'orange'], edgecolor='black', linewidth=2, linestyle='--' ) plt.title("Custom Polygon Map") plt.xlabel("Longitude") plt.ylabel("Latitude") plt.show()
123456789101112131415161718192021222324252627282930313233import geopandas as gpd import matplotlib.pyplot as plt from shapely.geometry import Polygon, Point # Create polygon GeoDataFrame polygons = [ Polygon([(0, 0), (5, 0), (5, 5), (0, 5)]), ] gdf_polygons = gpd.GeoDataFrame({'geometry': polygons}) # Create points GeoDataFrame points = [ Point(1, 1), Point(3, 4), Point(4, 2), ] gdf_points = gpd.GeoDataFrame({'geometry': points, 'label': ['School', 'Hospital', 'Shop']}) # Plot polygons ax = gdf_polygons.plot(color='lightyellow', edgecolor='black', figsize=(6, 6)) # Overlay points gdf_points.plot(ax=ax, color='red', marker='o', markersize=80, label='Locations of Interest') # Annotate points for x, y, label in zip(gdf_points.geometry.x, gdf_points.geometry.y, gdf_points['label']): plt.text(x + 0.1, y, label, fontsize=10) plt.title("Locations of Interest Overlayed on Polygon Map") plt.xlabel("Longitude") plt.ylabel("Latitude") plt.legend() plt.show()
1. Which library does GeoPandas use for plotting maps?
2. How can you change the color of features in a GeoPandas plot?
Danke für Ihr Feedback!
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
How can I customize the appearance of the polygons or points further?
Can I add more types of geometries, like lines, to the map?
How do I save the generated map as an image file?
Großartig!
Completion Rate verbessert auf 7.69
Visualizing Maps with GeoPandas
Swipe um das Menü anzuzeigen
Visualizing geospatial data is a fundamental skill in geospatial data science, enabling you to explore spatial patterns, communicate results, and make informed decisions. With GeoPandas, you can quickly create maps from your spatial datasets and customize their appearance using the powerful plotting capabilities of matplotlib. GeoPandas integrates seamlessly with matplotlib, allowing you to plot points, lines, and polygons directly from a GeoDataFrame. By adjusting colors, edge styles, and overlays, you can highlight important features and make your maps more informative and visually appealing.
1234567891011121314151617181920212223import geopandas as gpd import matplotlib.pyplot as plt from shapely.geometry import Polygon # Create a GeoDataFrame with polygon geometries polygons = [ Polygon([(0, 0), (2, 0), (2, 2), (0, 2)]), Polygon([(2, 0), (4, 0), (4, 2), (2, 2)]), Polygon([(0, 2), (2, 2), (2, 4), (0, 4)]), ] gdf = gpd.GeoDataFrame({'geometry': polygons, 'name': ['A', 'B', 'C']}) # Plot polygons with custom face colors and edge styles ax = gdf.plot( color=['lightblue', 'lightgreen', 'orange'], edgecolor='black', linewidth=2, linestyle='--' ) plt.title("Custom Polygon Map") plt.xlabel("Longitude") plt.ylabel("Latitude") plt.show()
123456789101112131415161718192021222324252627282930313233import geopandas as gpd import matplotlib.pyplot as plt from shapely.geometry import Polygon, Point # Create polygon GeoDataFrame polygons = [ Polygon([(0, 0), (5, 0), (5, 5), (0, 5)]), ] gdf_polygons = gpd.GeoDataFrame({'geometry': polygons}) # Create points GeoDataFrame points = [ Point(1, 1), Point(3, 4), Point(4, 2), ] gdf_points = gpd.GeoDataFrame({'geometry': points, 'label': ['School', 'Hospital', 'Shop']}) # Plot polygons ax = gdf_polygons.plot(color='lightyellow', edgecolor='black', figsize=(6, 6)) # Overlay points gdf_points.plot(ax=ax, color='red', marker='o', markersize=80, label='Locations of Interest') # Annotate points for x, y, label in zip(gdf_points.geometry.x, gdf_points.geometry.y, gdf_points['label']): plt.text(x + 0.1, y, label, fontsize=10) plt.title("Locations of Interest Overlayed on Polygon Map") plt.xlabel("Longitude") plt.ylabel("Latitude") plt.legend() plt.show()
1. Which library does GeoPandas use for plotting maps?
2. How can you change the color of features in a GeoPandas plot?
Danke für Ihr Feedback!