Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen DataFrames | Basics
Introduction to pandas [track]

bookDataFrames

If one column is not enough and you want to store data like in a spreadsheet, then you most likely will use DataFrames.

What is DataFrame?

Pandas DataFrame is a two-dimensional, size-mutable, tabular data, that may consist of values of different types. You can think of dataframes as tables.

There are several ways of DataFrame creating. They are all based on the use of different parameters within pd.DataFrame() method. First, you can pass list of lists - this will populate the table just like nested lists look like.

123456
# Importing library import pandas as pd # Create DataFrame df = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) print(df)
copy

Also you can create a DataFrame with predefined column's names. To it, pass a dictionary as the parameter. Keys of this dictionary will be the column's names and dictionary values will be respective column' values.

Dictionary is an ordered collection, that stores data in key:value format. To create a dictionary, use curly brackets, and pass key:value pairs. For instance, d = {'key1': 'value1', 'key2': 'value2'}. Dictonary values can be either strings, or numbers, or lists, or arrays.

123456
# Importing library import pandas as pd # Create DataFrame df = pd.DataFrame({'column1': [1, 2, 3], 'column2': [4, 5, 6]}) print(df)
copy

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 5

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Fragen Sie mich Fragen zu diesem Thema

Zusammenfassen Sie dieses Kapitel

Zeige reale Beispiele

Awesome!

Completion rate improved to 3.33

bookDataFrames

Swipe um das Menü anzuzeigen

If one column is not enough and you want to store data like in a spreadsheet, then you most likely will use DataFrames.

What is DataFrame?

Pandas DataFrame is a two-dimensional, size-mutable, tabular data, that may consist of values of different types. You can think of dataframes as tables.

There are several ways of DataFrame creating. They are all based on the use of different parameters within pd.DataFrame() method. First, you can pass list of lists - this will populate the table just like nested lists look like.

123456
# Importing library import pandas as pd # Create DataFrame df = pd.DataFrame([[1, 2, 3], [4, 5, 6]]) print(df)
copy

Also you can create a DataFrame with predefined column's names. To it, pass a dictionary as the parameter. Keys of this dictionary will be the column's names and dictionary values will be respective column' values.

Dictionary is an ordered collection, that stores data in key:value format. To create a dictionary, use curly brackets, and pass key:value pairs. For instance, d = {'key1': 'value1', 'key2': 'value2'}. Dictonary values can be either strings, or numbers, or lists, or arrays.

123456
# Importing library import pandas as pd # Create DataFrame df = pd.DataFrame({'column1': [1, 2, 3], 'column2': [4, 5, 6]}) print(df)
copy

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 5
some-alt