Converting Data Types
AI in Action
import pandas as pd
df = pd.read_csv("passengers.csv")
print(df.dtypes)
df["TicketDate"] = pd.to_datetime(df["TicketDate"], errors="coerce")
Converting Columns to Another Type
You can convert a column's data type using the .astype() method:
1234567891011import pandas as pd df = pd.read_csv("https://staging-content-media-cdn.codefinity.com/courses/64641555-cae4-4cd0-8d29-807aeb6bc0c4/datasets/passengers.csv", dtype=str) print(df.dtypes) # Convert Pclass to int df["Pclass"] = df["Pclass"].astype(int) # Convert Age to float df["Age"] = df["Age"].astype(float) print(df.dtypes)
Converting Strings to Numeric or Datetime
If you load numbers or dates and store them as text, you can use pd.to_numeric() and pd.to_datetime() to safely convert them back into a correct data type:
1234567891011import pandas as pd df = pd.read_csv("https://staging-content-media-cdn.codefinity.com/courses/64641555-cae4-4cd0-8d29-807aeb6bc0c4/datasets/passengers.csv", dtype=str) print(df.dtypes) # Convert a text column to numeric df["Fare"] = pd.to_numeric(df["Fare"], errors="coerce") # Convert a text column to datetime df["TicketDate"] = pd.to_datetime(df["TicketDate"], errors="coerce") print(df.dtypes)
The errors="coerce" argument replaces invalid entries with NaN instead of raising an error.
Converting to Categorical Type
If a column has only a few repeated values, you can convert it to the categorical type. This saves memory and speeds up comparisons.
123456789import pandas as pd df = pd.read_csv("https://staging-content-media-cdn.codefinity.com/courses/64641555-cae4-4cd0-8d29-807aeb6bc0c4/datasets/passengers.csv", dtype=str) print(df["Embarked"].dtype) # Convert column to categorical df["Embarked"] = df["Embarked"].astype("category") print(df["Embarked"].dtype)
This is especially useful for columns like passenger class, gender, or embarkation port.
1. Which method converts the column's data type?
2. What happens when you use errors="coerce" in pd.to_numeric()?
3. Why would you convert a column to the category type?
Danke für Ihr Feedback!
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Großartig!
Completion Rate verbessert auf 5.26
Converting Data Types
Swipe um das Menü anzuzeigen
AI in Action
import pandas as pd
df = pd.read_csv("passengers.csv")
print(df.dtypes)
df["TicketDate"] = pd.to_datetime(df["TicketDate"], errors="coerce")
Converting Columns to Another Type
You can convert a column's data type using the .astype() method:
1234567891011import pandas as pd df = pd.read_csv("https://staging-content-media-cdn.codefinity.com/courses/64641555-cae4-4cd0-8d29-807aeb6bc0c4/datasets/passengers.csv", dtype=str) print(df.dtypes) # Convert Pclass to int df["Pclass"] = df["Pclass"].astype(int) # Convert Age to float df["Age"] = df["Age"].astype(float) print(df.dtypes)
Converting Strings to Numeric or Datetime
If you load numbers or dates and store them as text, you can use pd.to_numeric() and pd.to_datetime() to safely convert them back into a correct data type:
1234567891011import pandas as pd df = pd.read_csv("https://staging-content-media-cdn.codefinity.com/courses/64641555-cae4-4cd0-8d29-807aeb6bc0c4/datasets/passengers.csv", dtype=str) print(df.dtypes) # Convert a text column to numeric df["Fare"] = pd.to_numeric(df["Fare"], errors="coerce") # Convert a text column to datetime df["TicketDate"] = pd.to_datetime(df["TicketDate"], errors="coerce") print(df.dtypes)
The errors="coerce" argument replaces invalid entries with NaN instead of raising an error.
Converting to Categorical Type
If a column has only a few repeated values, you can convert it to the categorical type. This saves memory and speeds up comparisons.
123456789import pandas as pd df = pd.read_csv("https://staging-content-media-cdn.codefinity.com/courses/64641555-cae4-4cd0-8d29-807aeb6bc0c4/datasets/passengers.csv", dtype=str) print(df["Embarked"].dtype) # Convert column to categorical df["Embarked"] = df["Embarked"].astype("category") print(df["Embarked"].dtype)
This is especially useful for columns like passenger class, gender, or embarkation port.
1. Which method converts the column's data type?
2. What happens when you use errors="coerce" in pd.to_numeric()?
3. Why would you convert a column to the category type?
Danke für Ihr Feedback!