Problem B. Minimum path
Let's traverse mat
and update values in it: now mat[i][j]
contains the path cost to cell [i, j]
. How to reach that? You can get to the mat[i][j]
from either mat[i-1][j]
or mat[i][j-1]
cell, that also contain the path cost to themselves. Thus, mat[i][j]
can be updated as:
mat[i][j] += min(mat[i-1][j], mat[i][j-1])
,
since you choose the minumum cost path between these two.
Note that some cells can be reached only from left or right, for example, mat[0][j]
(only from mat[0][j-1]
).
So, the goal is to traverse mat
and update its values; after that, return path cost at mat[-1][-1]
.
123456789101112131415161718def minPath(mat): m, n = len(mat), len(mat[0]) for i in range(1, m): mat[i][0] += mat[i-1][0] for j in range(1, n): mat[0][j] += mat[0][j-1] for i in range(1, m): for j in range(1, n): mat[i][j] += min(mat[i-1][j], mat[i][j-1]) return mat[-1][-1] mat = [[10,1,23,4,5,1], [2,13,20,9,1,5], [14,3,3,6,12,7]] print(minPath(mat))
Danke für Ihr Feedback!
single
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Zusammenfassen Sie dieses Kapitel
Code in file erklären
Erklären, warum file die Aufgabe nicht löst
Awesome!
Completion rate improved to 8.33
Problem B. Minimum path
Swipe um das Menü anzuzeigen
Let's traverse mat
and update values in it: now mat[i][j]
contains the path cost to cell [i, j]
. How to reach that? You can get to the mat[i][j]
from either mat[i-1][j]
or mat[i][j-1]
cell, that also contain the path cost to themselves. Thus, mat[i][j]
can be updated as:
mat[i][j] += min(mat[i-1][j], mat[i][j-1])
,
since you choose the minumum cost path between these two.
Note that some cells can be reached only from left or right, for example, mat[0][j]
(only from mat[0][j-1]
).
So, the goal is to traverse mat
and update its values; after that, return path cost at mat[-1][-1]
.
123456789101112131415161718def minPath(mat): m, n = len(mat), len(mat[0]) for i in range(1, m): mat[i][0] += mat[i-1][0] for j in range(1, n): mat[0][j] += mat[0][j-1] for i in range(1, m): for j in range(1, n): mat[i][j] += min(mat[i-1][j], mat[i][j-1]) return mat[-1][-1] mat = [[10,1,23,4,5,1], [2,13,20,9,1,5], [14,3,3,6,12,7]] print(minPath(mat))
Danke für Ihr Feedback!
Awesome!
Completion rate improved to 8.33single