Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Problem A. Binomial Coefficient | Problems
Dynamic Programming
course content

Kursinhalt

Dynamic Programming

Dynamic Programming

1. Intro to Dynamic Programming
2. Problems
3. Solutions

book
Problem A. Binomial Coefficient

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

In previous sections, we solved the problems that can be described as functions with 1 parameter (fib(n), rabbit(n)). Sometimes, the function depends on 2 or more parameters, for example, this one.

Aufgabe

Swipe to start coding

Create the program to calculate Binomial coefficient C(n, k) using dynamic programming. Since the function contains two parameters, the problem requires a two-dimensional array dp[n+1][n+1] to store the values.

  1. Define the base cases: C(n,0) = C(n,n) = 1
  2. Use the rule:

C(n,k) = C(n-1,k-1) + C(n-1,k).

Use Optimal Substructure and Overlapping Subproblems principles. If you’re unsure about how to store sub-solutions, open Hint.

Example 1. n=3, k=2 -> res = 3

Example2. n=10, k=4 -> res = 210

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 1
toggle bottom row

book
Problem A. Binomial Coefficient

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

In previous sections, we solved the problems that can be described as functions with 1 parameter (fib(n), rabbit(n)). Sometimes, the function depends on 2 or more parameters, for example, this one.

Aufgabe

Swipe to start coding

Create the program to calculate Binomial coefficient C(n, k) using dynamic programming. Since the function contains two parameters, the problem requires a two-dimensional array dp[n+1][n+1] to store the values.

  1. Define the base cases: C(n,0) = C(n,n) = 1
  2. Use the rule:

C(n,k) = C(n-1,k-1) + C(n-1,k).

Use Optimal Substructure and Overlapping Subproblems principles. If you’re unsure about how to store sub-solutions, open Hint.

Example 1. n=3, k=2 -> res = 3

Example2. n=10, k=4 -> res = 210

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 1
Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
Wir sind enttäuscht, dass etwas schief gelaufen ist. Was ist passiert?
some-alt