Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Problem D. Coin Change | Problems
Dynamic Programming
course content

Kursinhalt

Dynamic Programming

Dynamic Programming

1. Intro to Dynamic Programming
2. Problems
3. Solutions

book
Problem D. Coin Change

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

The problem is to find the possible number of ways to get N cents with coins of different denominations. Imagine you have an infinite amount of coins valued c[0], c[1], c[2], …, c[m-1] – some values (for example, coins of 1, 2, 5, and 10 cents; these values are stored to input as an array).

You can combine these coins to achieve N cents in sum. Calculate the number of possible variations.

Order does not matter, i. e. for N=10 combinations 1+2+2+5, 2+1+2+5, and 5+2+1+2 are equal.

Example 1: N = 5, coins = [1,2,5] -> 4

There are 4 ways to combine coins: 5=1+1+1+1+1, 5=1+1+1+2, 5=1+2+2, 5=5.

Example 2: N=4, coins=[1,2,3,7] -> 4

Answer is 4: 4=1+1+1+1, 4=2+2, 4=1+3, 4=1+1+2

Example 3: N=100, coins = [1,3,5,7,10] -> 6426

Aufgabe

Swipe to start coding

Implement the function and call it for the given test calls.

  1. How many ways to reach the K coins if you know the number of how to reach K-c[0], K-c[1], ... , K-c[m-1] coins?
  2. What is the least sum you can change using only one coin of c[0], c[1], ..., or c[-1]?

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 4
toggle bottom row

book
Problem D. Coin Change

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

The problem is to find the possible number of ways to get N cents with coins of different denominations. Imagine you have an infinite amount of coins valued c[0], c[1], c[2], …, c[m-1] – some values (for example, coins of 1, 2, 5, and 10 cents; these values are stored to input as an array).

You can combine these coins to achieve N cents in sum. Calculate the number of possible variations.

Order does not matter, i. e. for N=10 combinations 1+2+2+5, 2+1+2+5, and 5+2+1+2 are equal.

Example 1: N = 5, coins = [1,2,5] -> 4

There are 4 ways to combine coins: 5=1+1+1+1+1, 5=1+1+1+2, 5=1+2+2, 5=5.

Example 2: N=4, coins=[1,2,3,7] -> 4

Answer is 4: 4=1+1+1+1, 4=2+2, 4=1+3, 4=1+1+2

Example 3: N=100, coins = [1,3,5,7,10] -> 6426

Aufgabe

Swipe to start coding

Implement the function and call it for the given test calls.

  1. How many ways to reach the K coins if you know the number of how to reach K-c[0], K-c[1], ... , K-c[m-1] coins?
  2. What is the least sum you can change using only one coin of c[0], c[1], ..., or c[-1]?

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 4
Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
Wir sind enttäuscht, dass etwas schief gelaufen ist. Was ist passiert?
some-alt