Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Write a Readable Pipeline | Pipes and Chaining Operations
Data Manipulation in R (Core)

bookChallenge: Write a Readable Pipeline

You have learned how to use pipes to streamline your data manipulation code and how best practices like clear formatting and comments can make pipelines much easier to read and maintain. Now, you will put these skills to the test by refactoring a messy and hard-to-follow pipeline into a clean, well-documented sequence of operations for a realistic data cleaning scenario. This exercise will challenge you to apply everything you have learned about writing readable, professional pipelines in R.

Aufgabe

Swipe to start coding

Refactor the provided messy pipeline so that it is clean, readable, and well-commented for the given customer data cleaning scenario.

  • Remove rows where customer_id is missing.
  • Trim whitespace from first_name and last_name columns.
  • Filter to keep only rows where status is "active".
  • Create a new column full_name by combining first_name and last_name.
  • Arrange the rows by signup_date in descending order.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 6
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

bookChallenge: Write a Readable Pipeline

Swipe um das Menü anzuzeigen

You have learned how to use pipes to streamline your data manipulation code and how best practices like clear formatting and comments can make pipelines much easier to read and maintain. Now, you will put these skills to the test by refactoring a messy and hard-to-follow pipeline into a clean, well-documented sequence of operations for a realistic data cleaning scenario. This exercise will challenge you to apply everything you have learned about writing readable, professional pipelines in R.

Aufgabe

Swipe to start coding

Refactor the provided messy pipeline so that it is clean, readable, and well-commented for the given customer data cleaning scenario.

  • Remove rows where customer_id is missing.
  • Trim whitespace from first_name and last_name columns.
  • Filter to keep only rows where status is "active".
  • Create a new column full_name by combining first_name and last_name.
  • Arrange the rows by signup_date in descending order.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 6
single

single

some-alt