Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Integrate Multiple Data Sources | Joining Data Frames in R
Data Manipulation in R (Core)

bookChallenge: Integrate Multiple Data Sources

In real-world analytics, you often need to integrate information from multiple sources. This means joining several data frames and making decisions about how to handle missing values that result from incomplete matches across those sources. You will now apply your joining and data cleaning skills to build a unified dataset that could power business analysis.

Aufgabe

Swipe to start coding

Combine three related data frames—customers, orders, and payments—into a unified analytics dataset. Ensure the resulting data frame contains all records from each source, filling in missing information as appropriate.

  • Join customers and orders on customer_id so that all customers and all orders are included, even if there is no match.
  • Join the result with payments on order_id so that all orders and all payments are included, even if there is no match.
  • Fill missing values in the name column with "Unknown".
  • Fill missing values in the order_total and payment_amount columns with 0.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 4. Kapitel 6
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

bookChallenge: Integrate Multiple Data Sources

Swipe um das Menü anzuzeigen

In real-world analytics, you often need to integrate information from multiple sources. This means joining several data frames and making decisions about how to handle missing values that result from incomplete matches across those sources. You will now apply your joining and data cleaning skills to build a unified dataset that could power business analysis.

Aufgabe

Swipe to start coding

Combine three related data frames—customers, orders, and payments—into a unified analytics dataset. Ensure the resulting data frame contains all records from each source, filling in missing information as appropriate.

  • Join customers and orders on customer_id so that all customers and all orders are included, even if there is no match.
  • Join the result with payments on order_id so that all orders and all payments are included, even if there is no match.
  • Fill missing values in the name column with "Unknown".
  • Fill missing values in the order_total and payment_amount columns with 0.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 4. Kapitel 6
single

single

some-alt