Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Multiplication Rule for Independent Events | Statistical Dependence
Probability Theory Update

bookMultiplication Rule for Independent Events

When do we use the multiplication rule?

If we want to calculate the probability of two events occur at the same time (event A and B), we use multiplication rule.

Formula:

P(A and B) = P(A) * P(B)

  • P(A and B) - the probability of event A occurring and event B occurring at the same time,
  • P(A) - the probability of event A occurring,
  • P(B) - the probability of event B occurring.

Task example:

If you are rolling two dice simultaneously, what is the probability that the outcome of the first one is an even number and the second is 5?

The outcomes for the first case (even number): 2, 4, 6.

The outcomes for the second case (number 5): 5.

  1. P(even) = 3/6 = 0.5 = 50%,
  2. P(5) = 1/6 = 0.1667 = 16.67% (ronded to the two decimal points),
  3. P(even and 5) = P(even) * P(5) = 0.0833 = 8.33%

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 5

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Fragen Sie mich Fragen zu diesem Thema

Zusammenfassen Sie dieses Kapitel

Zeige reale Beispiele

Awesome!

Completion rate improved to 3.7

bookMultiplication Rule for Independent Events

Swipe um das Menü anzuzeigen

When do we use the multiplication rule?

If we want to calculate the probability of two events occur at the same time (event A and B), we use multiplication rule.

Formula:

P(A and B) = P(A) * P(B)

  • P(A and B) - the probability of event A occurring and event B occurring at the same time,
  • P(A) - the probability of event A occurring,
  • P(B) - the probability of event B occurring.

Task example:

If you are rolling two dice simultaneously, what is the probability that the outcome of the first one is an even number and the second is 5?

The outcomes for the first case (even number): 2, 4, 6.

The outcomes for the second case (number 5): 5.

  1. P(even) = 3/6 = 0.5 = 50%,
  2. P(5) = 1/6 = 0.1667 = 16.67% (ronded to the two decimal points),
  3. P(even and 5) = P(even) * P(5) = 0.0833 = 8.33%

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 5
some-alt