Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Multiplication Rule for Dependent Events | Statistical Dependence
Probability Theory Update

bookMultiplication Rule for Dependent Events

Multiplication Rule for Dependent Events

We use the multiplication rule for dependent events if the order of events is essential.

Formula:

P(A 1st and B 2nd) = P(A) * P(B|A)

  • P(A 1st and B 2nd) - the probability of event A occurring first and event B occurring second,
  • P(A) - the probability of event A occurring,
  • P(B|A) - the probability of event B occurring after event A occured.

Task example:

You have a basket with 5 yellow and 15 blue balls. What is the probability that we will take the blue ball after the yellow?

  1. P(yellow) = 5/20 = 0.25 = 25%,
  2. P(blue|yellow) = 15/19 = 0.78947 = 78.947% (we tool one yellow ball, so, only 19 left),
  3. P(yellow and blue|yellow) = P(yellow) * P(blue|yellow) = 25% * 78.947% = 19.737%

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 6

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Fragen Sie mich Fragen zu diesem Thema

Zusammenfassen Sie dieses Kapitel

Zeige reale Beispiele

Awesome!

Completion rate improved to 3.7

bookMultiplication Rule for Dependent Events

Swipe um das Menü anzuzeigen

Multiplication Rule for Dependent Events

We use the multiplication rule for dependent events if the order of events is essential.

Formula:

P(A 1st and B 2nd) = P(A) * P(B|A)

  • P(A 1st and B 2nd) - the probability of event A occurring first and event B occurring second,
  • P(A) - the probability of event A occurring,
  • P(B|A) - the probability of event B occurring after event A occured.

Task example:

You have a basket with 5 yellow and 15 blue balls. What is the probability that we will take the blue ball after the yellow?

  1. P(yellow) = 5/20 = 0.25 = 25%,
  2. P(blue|yellow) = 15/19 = 0.78947 = 78.947% (we tool one yellow ball, so, only 19 left),
  3. P(yellow and blue|yellow) = P(yellow) * P(blue|yellow) = 25% * 78.947% = 19.737%

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 2. Kapitel 6
some-alt