Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Poisson Distribution 2/3 | Distributions
Probability Theory Update

Swipe um das Menü anzuzeigen

book
Poisson Distribution 2/3

As you remember, with the .pmf() function, we can calculate the probability over a range using the addition rule. Look at the example: Example 1/2: We know that per day the expected value of users is 100. Calculate the probability that 110 users will visit the app. This distribution is discrete, so to calculate the probability of getting the exact number of customers, we can use the .pmf() function with two parameters: the first is our desored number of events, and the second is lambda.

Python realization:

We will use .pmf() function for the Poisson distribution using stats.poisson.pmf().

123
import scipy.stats as stats probability = stats.poisson.pmf(110, 100) print("The probability is", probability * 100, "%")
copy

Example 2/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will equal 16, 17, 18, or 19.

Python realization:

12345678910
import scipy.stats as stats prob_1 = stats.poisson.pmf(16, 15) prob_2 = stats.poisson.pmf(17, 15) prob_3 = stats.poisson.pmf(18, 15) prob_4 = stats.poisson.pmf(19, 15) probability = prob_1 + prob_2 + prob_3 + prob_4 print("The probability is", probability * 100, "%")
copy

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 5. Kapitel 2
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

Awesome!

Completion rate improved to 3.7

book
Poisson Distribution 2/3

As you remember, with the .pmf() function, we can calculate the probability over a range using the addition rule. Look at the example: Example 1/2: We know that per day the expected value of users is 100. Calculate the probability that 110 users will visit the app. This distribution is discrete, so to calculate the probability of getting the exact number of customers, we can use the .pmf() function with two parameters: the first is our desored number of events, and the second is lambda.

Python realization:

We will use .pmf() function for the Poisson distribution using stats.poisson.pmf().

123
import scipy.stats as stats probability = stats.poisson.pmf(110, 100) print("The probability is", probability * 100, "%")
copy

Example 2/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will equal 16, 17, 18, or 19.

Python realization:

12345678910
import scipy.stats as stats prob_1 = stats.poisson.pmf(16, 15) prob_2 = stats.poisson.pmf(17, 15) prob_3 = stats.poisson.pmf(18, 15) prob_4 = stats.poisson.pmf(19, 15) probability = prob_1 + prob_2 + prob_3 + prob_4 print("The probability is", probability * 100, "%")
copy

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

close

Awesome!

Completion rate improved to 3.7

Swipe um das Menü anzuzeigen

some-alt