Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Poisson Distribution 3/3 | Distributions
Probability Theory Update

Swipe um das Menü anzuzeigen

book
Poisson Distribution 3/3

As you remember, with the .cdf() function, we can calculate the probability that the random variable will take a value less then or equal a defined number. Look at the example: Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less or equal 12.

Python realization:

12345
import scipy.stats as stats probability = stats.poisson.cdf(12, 15) print("The probability is", probability * 100, "%")
copy

Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less equal the number within the range from 5 to 11 (5; 11].

Python realization:

1234567891011
import scipy.stats as stats prob_1 = stats.poisson.cdf(11, 15) prob_2 = stats.poisson.cdf(5, 15) probability = prob_1 - prob_2 print("The probability is", probability * 100, "%")
copy

When we subtract the second expression from the first, we leave the interval from 11 to 5 exclusive. Thus, using this calculation stats.poisson.cdf(11, 15), we will find the probability that our variable will take a value less than 11. And using this calculation stats.poisson.cdf(5, 15), we will find the probability that our variable will take a value less than or equal to 5.

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 5. Kapitel 3
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

Awesome!

Completion rate improved to 3.7

book
Poisson Distribution 3/3

As you remember, with the .cdf() function, we can calculate the probability that the random variable will take a value less then or equal a defined number. Look at the example: Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less or equal 12.

Python realization:

12345
import scipy.stats as stats probability = stats.poisson.cdf(12, 15) print("The probability is", probability * 100, "%")
copy

Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less equal the number within the range from 5 to 11 (5; 11].

Python realization:

1234567891011
import scipy.stats as stats prob_1 = stats.poisson.cdf(11, 15) prob_2 = stats.poisson.cdf(5, 15) probability = prob_1 - prob_2 print("The probability is", probability * 100, "%")
copy

When we subtract the second expression from the first, we leave the interval from 11 to 5 exclusive. Thus, using this calculation stats.poisson.cdf(11, 15), we will find the probability that our variable will take a value less than 11. And using this calculation stats.poisson.cdf(5, 15), we will find the probability that our variable will take a value less than or equal to 5.

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

close

Awesome!

Completion rate improved to 3.7

Swipe um das Menü anzuzeigen

some-alt