Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Probability Mass Function (PMF) 2/2 | Probability Functions
Probability Theory Update

Swipe um das Menü anzuzeigen

book
Probability Mass Function (PMF) 2/2

Probability mass function over a range:

In some cases, we want to know the probability that discrete random variables are equal to numbers over a range.

Example:

Calculate the probability that we will have success with the fair coin at 4 or less times (0, 1, 2, 3 or 4) (the chance of getting head or tail is 50%) if we have 15 attempts. We assume that success means getting a head.

Python realization:

12345678910111213141516171819202122232425262728293031
# Import required library import scipy.stats as stats # The probability of getting 0 successes prob_0 = stats.binom.pmf(0, n = 15, p = 0.5) # The probability of getting 1 success prob_1 = stats.binom.pmf(1, n = 15, p = 0.5) # The probability of getting 2 successes prob_2 = stats.binom.pmf(2, n = 15, p = 0.5) # The probability of getting 3 successes prob_3 = stats.binom.pmf(3, n = 15, p = 0.5) # The probability of getting 4 successes prob_4 = stats.binom.pmf(4, n = 15, p = 0.5) # The resulting probability probability = prob_0 + prob_1 + prob_2 + prob_3 + prob_4 print("The probability is", probability * 100, "%")
copy

Explanation

We've found the probability that a discrete random variable will equal exactly 0, 1, 2, 3, or 4 using the probability mass function. Then, we summed up all probabilities using the addition rule because each of the found outcomes was permissible for us.

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 4. Kapitel 3
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

Awesome!

Completion rate improved to 3.7

book
Probability Mass Function (PMF) 2/2

Probability mass function over a range:

In some cases, we want to know the probability that discrete random variables are equal to numbers over a range.

Example:

Calculate the probability that we will have success with the fair coin at 4 or less times (0, 1, 2, 3 or 4) (the chance of getting head or tail is 50%) if we have 15 attempts. We assume that success means getting a head.

Python realization:

12345678910111213141516171819202122232425262728293031
# Import required library import scipy.stats as stats # The probability of getting 0 successes prob_0 = stats.binom.pmf(0, n = 15, p = 0.5) # The probability of getting 1 success prob_1 = stats.binom.pmf(1, n = 15, p = 0.5) # The probability of getting 2 successes prob_2 = stats.binom.pmf(2, n = 15, p = 0.5) # The probability of getting 3 successes prob_3 = stats.binom.pmf(3, n = 15, p = 0.5) # The probability of getting 4 successes prob_4 = stats.binom.pmf(4, n = 15, p = 0.5) # The resulting probability probability = prob_0 + prob_1 + prob_2 + prob_3 + prob_4 print("The probability is", probability * 100, "%")
copy

Explanation

We've found the probability that a discrete random variable will equal exactly 0, 1, 2, 3, or 4 using the probability mass function. Then, we summed up all probabilities using the addition rule because each of the found outcomes was permissible for us.

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

close

Awesome!

Completion rate improved to 3.7

Swipe um das Menü anzuzeigen

some-alt