Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Cumulative Distribution Function (CDF) 2/2 | Probability Functions
Probability Theory Update

Swipe um das Menü anzuzeigen

book
Cumulative Distribution Function (CDF) 2/2

Probability mass function over a range:

In some cases, we want to know the probability that a random variable is equal to numbers over a range.

Formula:

P(a < X <= b) = Fx(a) - Fx(b)

  • P(a < X <= b) - the probability that a random variable X takes a value within the rage (a; b].

  • Fx(a) - applying CMT to find a probability that a random variable X takes a value less than or a.

  • Fx(b) - applying CMT to find a probability that a random variable X takes a value less than or b.

Example:

Calculate the probability a fair coin will succed in no more than 8 but no less than 4 cases (4; 8] if we have 15 attempts. We assume that success means getting a head.

Python realization:

12345678910111213141516171819
# Import required library import scipy.stats as stats # The probability of getting 8 successes prob_8 = stats.binom.pmf(8, n = 15, p = 0.5) # The probability of getting 4 success prob_4 = stats.binom.pmf(4, n = 15, p = 0.5) # The resulting probability probability = prob_8 - prob_4 print("The probability is", probability * 100, "%")
copy

Explanation

According to the formula, we subtract the probability that a random variable will take a value less than or four from the probability that a random value will take a value less than or 8.

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 4. Kapitel 5
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

Awesome!

Completion rate improved to 3.7

book
Cumulative Distribution Function (CDF) 2/2

Probability mass function over a range:

In some cases, we want to know the probability that a random variable is equal to numbers over a range.

Formula:

P(a < X <= b) = Fx(a) - Fx(b)

  • P(a < X <= b) - the probability that a random variable X takes a value within the rage (a; b].

  • Fx(a) - applying CMT to find a probability that a random variable X takes a value less than or a.

  • Fx(b) - applying CMT to find a probability that a random variable X takes a value less than or b.

Example:

Calculate the probability a fair coin will succed in no more than 8 but no less than 4 cases (4; 8] if we have 15 attempts. We assume that success means getting a head.

Python realization:

12345678910111213141516171819
# Import required library import scipy.stats as stats # The probability of getting 8 successes prob_8 = stats.binom.pmf(8, n = 15, p = 0.5) # The probability of getting 4 success prob_4 = stats.binom.pmf(4, n = 15, p = 0.5) # The resulting probability probability = prob_8 - prob_4 print("The probability is", probability * 100, "%")
copy

Explanation

According to the formula, we subtract the probability that a random variable will take a value less than or four from the probability that a random value will take a value less than or 8.

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

close

Awesome!

Completion rate improved to 3.7

Swipe um das Menü anzuzeigen

some-alt