Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Euclidean Algorithm | Greedy Algorithms: Overview and Examples
Greedy Algorithms using Python

Swipe um das Menü anzuzeigen

book
Euclidean Algorithm

Let’s create a Euclidean algorithm for searching x and y for some integers a and b that

ax + by = gcd(a,b),

where gcd() is the greatest common divisor of a and b.

Searching for gcd(a,b)

We’ll use the fact that gcd(a, b) = gcd(b, a-b), where a >= b. Let’s be greedy and subtract each time as much as possible. The result will be:

gcd(a, b) = gcd(b, a%b)

The algorithm of gcd(a, b) stops when b=0, and the answer is a.

Euclidean Algorithm Realization

Let x and y be the solution of equation ax+by = gcd(a,b) and x1 and y1 are soltion for gcd(b, a%b) = b * x1+a%b*y1. After changing we'll get that `gcd(b, a%b) = b * x1+a%by1 = bx1 + (a - b*a//b)y1 = ay1 + b(x1-a//by1).

Since gcd(a,b) = gcd(b, a%b), multipliers near a and b are equal, so:

x = y1

y = x1-a//b*y1.

We'll use this fact in the algorithm.

Aufgabe

Swipe to start coding

Complete the Euclidean Algorithm and test it.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 1. Kapitel 4
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

Awesome!

Completion rate improved to 7.69

book
Euclidean Algorithm

Let’s create a Euclidean algorithm for searching x and y for some integers a and b that

ax + by = gcd(a,b),

where gcd() is the greatest common divisor of a and b.

Searching for gcd(a,b)

We’ll use the fact that gcd(a, b) = gcd(b, a-b), where a >= b. Let’s be greedy and subtract each time as much as possible. The result will be:

gcd(a, b) = gcd(b, a%b)

The algorithm of gcd(a, b) stops when b=0, and the answer is a.

Euclidean Algorithm Realization

Let x and y be the solution of equation ax+by = gcd(a,b) and x1 and y1 are soltion for gcd(b, a%b) = b * x1+a%b*y1. After changing we'll get that `gcd(b, a%b) = b * x1+a%by1 = bx1 + (a - b*a//b)y1 = ay1 + b(x1-a//by1).

Since gcd(a,b) = gcd(b, a%b), multipliers near a and b are equal, so:

x = y1

y = x1-a//b*y1.

We'll use this fact in the algorithm.

Aufgabe

Swipe to start coding

Complete the Euclidean Algorithm and test it.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

close

Awesome!

Completion rate improved to 7.69

Swipe um das Menü anzuzeigen

some-alt