Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Arrays Operations | Introduction to NumPy
Introduction to Data Analysis in Python
course content

Kursinhalt

Introduction to Data Analysis in Python

Introduction to Data Analysis in Python

1. Basics
2. Data Types
3. Control Flow
4. Functions and Modules
5. Introduction to NumPy

book
Arrays Operations

NumPy arrays not only perform faster, but also support different operations, that are not available for built-in lists.

For example, you can add/subtract/multiply/divide by a certain number all the array elements. Or you can multiply two arrays element-by-element.

123456789
# Import the library import numpy as np # Creating two arrays arr1 = np.array([1, 2, 3]) arr2 = np.array([10, 20, 30]) # Perform some arrays operations print(arr1 + 3) print(arr1 * arr2)
copy

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 5. Kapitel 3

Fragen Sie AI

expand
ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

course content

Kursinhalt

Introduction to Data Analysis in Python

Introduction to Data Analysis in Python

1. Basics
2. Data Types
3. Control Flow
4. Functions and Modules
5. Introduction to NumPy

book
Arrays Operations

NumPy arrays not only perform faster, but also support different operations, that are not available for built-in lists.

For example, you can add/subtract/multiply/divide by a certain number all the array elements. Or you can multiply two arrays element-by-element.

123456789
# Import the library import numpy as np # Creating two arrays arr1 = np.array([1, 2, 3]) arr2 = np.array([10, 20, 30]) # Perform some arrays operations print(arr1 + 3) print(arr1 * arr2)
copy

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 5. Kapitel 3
Wir sind enttäuscht, dass etwas schief gelaufen ist. Was ist passiert?
some-alt