Aggregate Functions
You can also calculate aggregate statistics of NumPy arrays, like minimum, maximum, mean, product, sum, etc. These ase realized in NumPy as arrays methods.
| Method | Description |
|---|---|
.mean() | Returns the arithmetic mean |
.sum() | Returns the sum of elements |
.prod() | Returns the product of all elements |
.min() | Returns the minimum of an array |
.max() | Returns the maximum of an array |
.std() | Returns the standard deviation of array elements |
.var() | Returns the variance of array elements |
For example, assume we have two arrays: prices and sales, representing goods' prices and quantity of each good being sold, respectively. Using multiplication and .sum() method we can easily calculate the total revenue.
12345678910# Import the library import numpy as np # Two arrays prices = np.array([15, 60, 40, 5]) sales = np.array([7, 3, 5, 15]) # Revenue per good rev_per_good = prices * sales # Total revenue print("Total revenue is", rev_per_good.sum())
Danke für Ihr Feedback!
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Awesome!
Completion rate improved to 2.7
Aggregate Functions
Swipe um das Menü anzuzeigen
You can also calculate aggregate statistics of NumPy arrays, like minimum, maximum, mean, product, sum, etc. These ase realized in NumPy as arrays methods.
| Method | Description |
|---|---|
.mean() | Returns the arithmetic mean |
.sum() | Returns the sum of elements |
.prod() | Returns the product of all elements |
.min() | Returns the minimum of an array |
.max() | Returns the maximum of an array |
.std() | Returns the standard deviation of array elements |
.var() | Returns the variance of array elements |
For example, assume we have two arrays: prices and sales, representing goods' prices and quantity of each good being sold, respectively. Using multiplication and .sum() method we can easily calculate the total revenue.
12345678910# Import the library import numpy as np # Two arrays prices = np.array([15, 60, 40, 5]) sales = np.array([7, 3, 5, 15]) # Revenue per good rev_per_good = prices * sales # Total revenue print("Total revenue is", rev_per_good.sum())
Danke für Ihr Feedback!