Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen What is K-Means Clustering? | K-Means
Clusteranalyse
course content

Kursinhalt

Clusteranalyse

Clusteranalyse

1. Clustering Fundamentals
2. Core Concepts
3. K-Means
4. Hierarchical Clustering
5. DBSCAN
6. GMMs

book
What is K-Means Clustering?

Among clustering algorithms, K-means is a widely popular and effective method. It partitions data into K distinct clusters, where K is a pre-defined number.

The goal of K-means is to minimize distances within clusters and maximize distances between clusters. This creates internally similar and externally distinct groups. K-means has numerous applications, such as:

  • Customer segmentation: grouping customers for targeted marketing;

  • Document clustering: organizing documents by topic;

  • Image segmentation: dividing images for object recognition;

  • Anomaly detection: identifying unusual data points.

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 1
Wir sind enttäuscht, dass etwas schief gelaufen ist. Was ist passiert?
some-alt