Kursinhalt
Clusteranalyse
Clusteranalyse
1. Clustering Fundamentals
Challenge: Preprocessing the Dataset
Aufgabe
Swipe to start coding
You are given a synthetic dataset stored in the data
variable.
- Replace missing values in the
'Age'
column with the mean value of this column and store the result in this column. - Create an instance of an appropriate encoder, which will be used for the
'City'
column and store it in thecity_encoder
variable. Make sure to specify the removal of the first column. - Encode the values in the
'City'
column usingcity_encoder
and store the result in thecity_encoded
variable. - Create an instance of an appropriate encoder, which will be used for the
'Income'
column and store it in theincome_encoder
variable. Note that'High'
>'Middle'
>'Low'
. - Encode the values in the
'Income'
column usingincome_encoder
and store the result in the'Income'
column.
Lösung
War alles klar?
Danke für Ihr Feedback!
Abschnitt 2. Kapitel 6
Challenge: Preprocessing the Dataset
Aufgabe
Swipe to start coding
You are given a synthetic dataset stored in the data
variable.
- Replace missing values in the
'Age'
column with the mean value of this column and store the result in this column. - Create an instance of an appropriate encoder, which will be used for the
'City'
column and store it in thecity_encoder
variable. Make sure to specify the removal of the first column. - Encode the values in the
'City'
column usingcity_encoder
and store the result in thecity_encoded
variable. - Create an instance of an appropriate encoder, which will be used for the
'Income'
column and store it in theincome_encoder
variable. Note that'High'
>'Middle'
>'Low'
. - Encode the values in the
'Income'
column usingincome_encoder
and store the result in the'Income'
column.
Lösung
War alles klar?
Danke für Ihr Feedback!
Abschnitt 2. Kapitel 6