Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Logical Indexing | Data Frames
Einführung in R: Teil I

bookLogical Indexing

Good! Accessing columns by their names is convenient. Can we filter the rows we want to output?

Indeed, we can. First, we can use indices (like it was for vectors or matrices). But usually, we do not know the positions of the rows but know some conditions we want to satisfy. For example, we may want to extract data for only Males or only people older than 30. You can do it by specifying necessary conditions within square brackets. You need to use the double sign == for equality.

Assume we have data frame data and want to filter to rows having the value 30 in column age. This can be done using the following syntax: data[data$age == 30,]. Note that you put condition as the first index within the square bracket. For example, for the same training data as before, let's extract the data of people older than 30 and males only.

1234567891011
# Data name <- c("Alex", "Julia", "Finn") age <- c(24, 43, 32) gender <- c("M", "F", "M") # Creating a data frame test <- data.frame(name, age, gender) # People older than 30 test[test$age > 30, ] # Males only test[test$gender == 'M', ]
copy

As you can see, that's correct.

Aufgabe

Swipe to start coding

Using the mtcars dataset, extract the following data:

  1. The cars pass a quarter-mile in less than 16 seconds (qsec column).
  2. Cars with 6 cylinders (cyl column).

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 5. Kapitel 4
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

close

Awesome!

Completion rate improved to 2.27

bookLogical Indexing

Swipe um das Menü anzuzeigen

Good! Accessing columns by their names is convenient. Can we filter the rows we want to output?

Indeed, we can. First, we can use indices (like it was for vectors or matrices). But usually, we do not know the positions of the rows but know some conditions we want to satisfy. For example, we may want to extract data for only Males or only people older than 30. You can do it by specifying necessary conditions within square brackets. You need to use the double sign == for equality.

Assume we have data frame data and want to filter to rows having the value 30 in column age. This can be done using the following syntax: data[data$age == 30,]. Note that you put condition as the first index within the square bracket. For example, for the same training data as before, let's extract the data of people older than 30 and males only.

1234567891011
# Data name <- c("Alex", "Julia", "Finn") age <- c(24, 43, 32) gender <- c("M", "F", "M") # Creating a data frame test <- data.frame(name, age, gender) # People older than 30 test[test$age > 30, ] # Males only test[test$gender == 'M', ]
copy

As you can see, that's correct.

Aufgabe

Swipe to start coding

Using the mtcars dataset, extract the following data:

  1. The cars pass a quarter-mile in less than 16 seconds (qsec column).
  2. Cars with 6 cylinders (cyl column).

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

close

Awesome!

Completion rate improved to 2.27
Abschnitt 5. Kapitel 4
single

single

some-alt