Pointers’ Arithmetic
Why did we go deep into arrays while learning pointers? The fact is that the array’s name is a pointer to its first element.
We can get the address of the first element of the array by its name or by declaring the pointer:
12345int arr[5]{1, 2, 3, 4, 5}; int *p = &arr[0]; cout << p << endl; cout << arr << endl;
In other words, indexing is equivalent to adding (or substructing) to the pointer:
12cout << *(p+2) << endl; // equivalent to arr[2] cout << *(arr+2) << endl; // equivalent to arr[2]
The for loop we used to go through the arrays can also be used with pointers by adding 1 on each step, but we will use these feature pointers in work with functions and dynamic memory in the following sections.
Danke für Ihr Feedback!
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Fragen Sie mich Fragen zu diesem Thema
Zusammenfassen Sie dieses Kapitel
Zeige reale Beispiele
Awesome!
Completion rate improved to 2.94
Pointers’ Arithmetic
Swipe um das Menü anzuzeigen
Why did we go deep into arrays while learning pointers? The fact is that the array’s name is a pointer to its first element.
We can get the address of the first element of the array by its name or by declaring the pointer:
12345int arr[5]{1, 2, 3, 4, 5}; int *p = &arr[0]; cout << p << endl; cout << arr << endl;
In other words, indexing is equivalent to adding (or substructing) to the pointer:
12cout << *(p+2) << endl; // equivalent to arr[2] cout << *(arr+2) << endl; // equivalent to arr[2]
The for loop we used to go through the arrays can also be used with pointers by adding 1 on each step, but we will use these feature pointers in work with functions and dynamic memory in the following sections.
Danke für Ihr Feedback!