Comparing the Dynamics
That's an interesting result! The yearly average temperatures across clusters significantly differ for 3 of them (47.3, 60.9, and 79.24). It seems like a good split.
Now let's visualize the monthly dynamics of average temperatures across clusters, and compare the result with the 5 clusters by the K-Means algorithm. The respective line plot is below.
Swipe to start coding
Visualize the monthly temperature dynamics across clusters. Follow the next steps:
- Import
KMedoidsfunction fromsklearn_extra.cluster. - Create a
KMedoidsobject namedmodelwith 4 clusters. - Fit the 3-15 columns (these are not indices, but positions) of
datatomodel. - Add the
'prediction'column todatawith predicted bymodellabels. - Calculate the monthly averages using
dataand save the result within thedDataFrame:
- Group the observations by the
'prediction'column. - Calculate the mean values.
- Stack the columns into indices (already done).
- Reset the indices.
- Assign
['Group', 'Month', 'Temp']as columns names ofd. - Build
lineplotwith'Month'on the x-axis,'Temp'on the y-axis for each'Group'ofdDataFrame (i.e. separate line and color for each'Group').
Lösung
Danke für Ihr Feedback!
single
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Awesome!
Completion rate improved to 3.57
Comparing the Dynamics
Swipe um das Menü anzuzeigen
That's an interesting result! The yearly average temperatures across clusters significantly differ for 3 of them (47.3, 60.9, and 79.24). It seems like a good split.
Now let's visualize the monthly dynamics of average temperatures across clusters, and compare the result with the 5 clusters by the K-Means algorithm. The respective line plot is below.
Swipe to start coding
Visualize the monthly temperature dynamics across clusters. Follow the next steps:
- Import
KMedoidsfunction fromsklearn_extra.cluster. - Create a
KMedoidsobject namedmodelwith 4 clusters. - Fit the 3-15 columns (these are not indices, but positions) of
datatomodel. - Add the
'prediction'column todatawith predicted bymodellabels. - Calculate the monthly averages using
dataand save the result within thedDataFrame:
- Group the observations by the
'prediction'column. - Calculate the mean values.
- Stack the columns into indices (already done).
- Reset the indices.
- Assign
['Group', 'Month', 'Temp']as columns names ofd. - Build
lineplotwith'Month'on the x-axis,'Temp'on the y-axis for each'Group'ofdDataFrame (i.e. separate line and color for each'Group').
Lösung
Danke für Ihr Feedback!
single