Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lernen Challenge: Slicing and Search Drills | Strings
Data Types in Python

bookChallenge: Slicing and Search Drills

Aufgabe

Swipe to start coding

Fill in the expressions to compute each result using only the taught tools (string methods, slicing, in/find/count, and f-strings).

Compute:

  1. name_clean: trim leading/trailing spaces from full_name.
  2. has_quick: True if "quick" appears anywhere in sentence (case-insensitive).
  3. inside_parens: the substring inside the first pair of parentheses in sentence.
  4. o_count: how many times the letter 'o' appears in sentence (case-insensitive).
  5. id_prefix, id_number, id_suffix: from id_code = "USR-00042-xy" extract "USR", "00042", and "xy" via slicing.
  6. domain: from email, after trimming and lowercasing, take everything after @.
  7. report: build "{name_clean} | {domain} | {id_number} | {o_count}" using an f-string and the provided SEP.

Lösung

War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

Abschnitt 3. Kapitel 6
single

single

Fragen Sie AI

expand

Fragen Sie AI

ChatGPT

Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen

Suggested prompts:

Can you explain this in simpler terms?

What are the next steps I should take?

Can you give me an example?

close

Awesome!

Completion rate improved to 5

bookChallenge: Slicing and Search Drills

Swipe um das Menü anzuzeigen

Aufgabe

Swipe to start coding

Fill in the expressions to compute each result using only the taught tools (string methods, slicing, in/find/count, and f-strings).

Compute:

  1. name_clean: trim leading/trailing spaces from full_name.
  2. has_quick: True if "quick" appears anywhere in sentence (case-insensitive).
  3. inside_parens: the substring inside the first pair of parentheses in sentence.
  4. o_count: how many times the letter 'o' appears in sentence (case-insensitive).
  5. id_prefix, id_number, id_suffix: from id_code = "USR-00042-xy" extract "USR", "00042", and "xy" via slicing.
  6. domain: from email, after trimming and lowercasing, take everything after @.
  7. report: build "{name_clean} | {domain} | {id_number} | {o_count}" using an f-string and the provided SEP.

Lösung

Switch to desktopWechseln Sie zum Desktop, um in der realen Welt zu übenFahren Sie dort fort, wo Sie sind, indem Sie eine der folgenden Optionen verwenden
War alles klar?

Wie können wir es verbessern?

Danke für Ihr Feedback!

close

Awesome!

Completion rate improved to 5
Abschnitt 3. Kapitel 6
single

single

some-alt