Grundlegende Arithmetik und Operatorrangfolge
You'll use arithmetic operators constantly in Python. Consider the most common ones and how precedence determines evaluation order.
Main Operations
12345678a = 10 b = 3 print(a + b) # Addition print(a - b) # Subtraction print(a * b) # Multiplication print(a / b) # Division print(a ** b) # Exponentiation
Operator Precedence
When multiple operators appear, Python evaluates them in this order (highest → lowest among arithmetic):
**;- Unary
+and-(sign); *,/;+,-.
Parentheses always win and make intent explicit. Exponentiation ** is right-associative.
123456789print(2 + 3 * 4) # 14 (multiplication before addition) print((2 + 3) * 4) # 20 (parentheses change the order) # Exponentiation binds tighter than unary minus print(-3 ** 2) # -9 (equivalent to -(3 ** 2)) print((-3) ** 2) # 9 # Right-associative exponentiation print(2 ** 3 ** 2) # 512 (2 ** (3 ** 2))
- Prefer parentheses in anything nontrivial, readability > cleverness.
- Remember
/always yields a float (even if divisible).
1. What value will this code output?
2. Which expression evaluates to 64?
3. What value will this code output?
Danke für Ihr Feedback!
Fragen Sie AI
Fragen Sie AI
Fragen Sie alles oder probieren Sie eine der vorgeschlagenen Fragen, um unser Gespräch zu beginnen
Großartig!
Completion Rate verbessert auf 3.45
Grundlegende Arithmetik und Operatorrangfolge
Swipe um das Menü anzuzeigen
You'll use arithmetic operators constantly in Python. Consider the most common ones and how precedence determines evaluation order.
Main Operations
12345678a = 10 b = 3 print(a + b) # Addition print(a - b) # Subtraction print(a * b) # Multiplication print(a / b) # Division print(a ** b) # Exponentiation
Operator Precedence
When multiple operators appear, Python evaluates them in this order (highest → lowest among arithmetic):
**;- Unary
+and-(sign); *,/;+,-.
Parentheses always win and make intent explicit. Exponentiation ** is right-associative.
123456789print(2 + 3 * 4) # 14 (multiplication before addition) print((2 + 3) * 4) # 20 (parentheses change the order) # Exponentiation binds tighter than unary minus print(-3 ** 2) # -9 (equivalent to -(3 ** 2)) print((-3) ** 2) # 9 # Right-associative exponentiation print(2 ** 3 ** 2) # 512 (2 ** (3 ** 2))
- Prefer parentheses in anything nontrivial, readability > cleverness.
- Remember
/always yields a float (even if divisible).
1. What value will this code output?
2. Which expression evaluates to 64?
3. What value will this code output?
Danke für Ihr Feedback!