Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Noise Reduction and Smoothing | Image Processing with OpenCV
Computer Vision Course Outline
course content

Kursusindhold

Computer Vision Course Outline

Computer Vision Course Outline

1. Introduction to Computer Vision
2. Image Processing with OpenCV
3. Convolutional Neural Networks
4. Object Detection
5. Advanced Topics Overview

book
Noise Reduction and Smoothing

Noise in images appears as unwanted graininess or distortion, often caused by low lighting, compression artifacts, or sensor limitations. Smoothing techniques help reduce noise while preserving important image details.

Gaussian Blurring (Smoothing Noise)

The Gaussian filter applies a weighted average to surrounding pixels, giving a natural-looking blur.

Median Blurring (Salt-and-Pepper Noise Removal)

The median filter replaces each pixel with the median value of its neighbors. This is effective for removing salt-and-pepper noise (random white and black pixels).

Opgave

Swipe to start coding

Apply two types of blur on the noisy image of a puppy: noisy puppy It is to see how the effect differs.

  • Kernel size for Gaussian Blur must be 15x15;
  • Kernel size for Median Blur must be 5.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 4
toggle bottom row

book
Noise Reduction and Smoothing

Noise in images appears as unwanted graininess or distortion, often caused by low lighting, compression artifacts, or sensor limitations. Smoothing techniques help reduce noise while preserving important image details.

Gaussian Blurring (Smoothing Noise)

The Gaussian filter applies a weighted average to surrounding pixels, giving a natural-looking blur.

Median Blurring (Salt-and-Pepper Noise Removal)

The median filter replaces each pixel with the median value of its neighbors. This is effective for removing salt-and-pepper noise (random white and black pixels).

Opgave

Swipe to start coding

Apply two types of blur on the noisy image of a puppy: noisy puppy It is to see how the effect differs.

  • Kernel size for Gaussian Blur must be 15x15;
  • Kernel size for Median Blur must be 5.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 4
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt