Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Fit a Spring's Oscillation Data | Data Analysis and Visualization in Physics
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Physics Students

bookChallenge: Fit a Spring's Oscillation Data

In this challenge, you will work with displacement versus time data collected from a spring-mass system in oscillation. Your goal is to fit a sinusoidal model to the data, visualize both the raw measurements and the fitted curve, and analyze the quality of your fit by examining the residuals. This exercise will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

Opgave

Swipe to start coding

Write a Python function to analyze spring-mass oscillation data by fitting a sinusoidal model and visualizing the results. This task will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

  • Write a function that takes two arrays as input: one for time data and one for measured displacement data from a spring-mass oscillation experiment.
  • Fit the displacement versus time data to the sinusoidal model defined as A * sin(omega * t + phi) + C, where:
    • A is the amplitude;
    • omega is the angular frequency;
    • phi is the phase offset;
    • C is the vertical offset.
  • Use the scipy.optimize.curve_fit function to fit the model to the data.
  • Use the following initial parameter guesses for curve fitting:
    • Amplitude (A): half the range of the displacement data;
    • Angular frequency (omega): 2.0;
    • Phase offset (phi): 0;
    • Vertical offset (C): mean of the displacement data.
  • Plot both the original measured data (as points) and the fitted curve (as a line) on the same graph using matplotlib.pyplot.
  • Compute the residuals as the difference between the measured displacement values and the fitted values at each time point.
  • Plot the residuals as a function of time on a separate graph.
  • Return the fitted parameters and the residuals from your function.
  • Ensure your code is clear and well-structured, and that your plots include appropriate labels and titles.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 5
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Suggested prompts:

What kind of data format should I use for the displacement versus time measurements?

Can you guide me through the steps to fit a sinusoidal model to the data?

How do I analyze and interpret the residuals after fitting the model?

close

bookChallenge: Fit a Spring's Oscillation Data

Stryg for at vise menuen

In this challenge, you will work with displacement versus time data collected from a spring-mass system in oscillation. Your goal is to fit a sinusoidal model to the data, visualize both the raw measurements and the fitted curve, and analyze the quality of your fit by examining the residuals. This exercise will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

Opgave

Swipe to start coding

Write a Python function to analyze spring-mass oscillation data by fitting a sinusoidal model and visualizing the results. This task will help you develop practical skills in model fitting and validation, which are essential for analyzing real experimental data in physics.

  • Write a function that takes two arrays as input: one for time data and one for measured displacement data from a spring-mass oscillation experiment.
  • Fit the displacement versus time data to the sinusoidal model defined as A * sin(omega * t + phi) + C, where:
    • A is the amplitude;
    • omega is the angular frequency;
    • phi is the phase offset;
    • C is the vertical offset.
  • Use the scipy.optimize.curve_fit function to fit the model to the data.
  • Use the following initial parameter guesses for curve fitting:
    • Amplitude (A): half the range of the displacement data;
    • Angular frequency (omega): 2.0;
    • Phase offset (phi): 0;
    • Vertical offset (C): mean of the displacement data.
  • Plot both the original measured data (as points) and the fitted curve (as a line) on the same graph using matplotlib.pyplot.
  • Compute the residuals as the difference between the measured displacement values and the fitted values at each time point.
  • Plot the residuals as a function of time on a separate graph.
  • Return the fitted parameters and the residuals from your function.
  • Ensure your code is clear and well-structured, and that your plots include appropriate labels and titles.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 5
single

single

some-alt