Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Build a Preprocessing Pipeline | Choosing and Evaluating Techniques
Quizzes & Challenges
Quizzes
Challenges
/
Feature Scaling and Normalization in Python

bookChallenge: Build a Preprocessing Pipeline

Opgave

Swipe to start coding

You're given a small mixed-type dataset. Build a leakage-safe preprocessing + model pipeline with scikit-learn:

  1. Split data into X (features) and y (target), then do a train/test split (test_size=0.3, random_state=42).
  2. Create a ColumnTransformer named preprocess:
    • numeric columns → StandardScaler()
    • categorical columns → OneHotEncoder(handle_unknown="ignore")
  3. Build a Pipeline named pipe with steps:
    • ("preprocess", preprocess)
    • ("clf", LogisticRegression(max_iter=1000, random_state=0))
  4. Fit on train only, then predict on test:
    • compute y_pred and test_accuracy = accuracy_score(y_test, y_pred)
  5. Add a few prints at the end to show shapes and the accuracy.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 5. Kapitel 3
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Suggested prompts:

Can you explain this in simpler terms?

What are the main points I should remember?

Can you give me an example?

close

Awesome!

Completion rate improved to 5.26

bookChallenge: Build a Preprocessing Pipeline

Stryg for at vise menuen

Opgave

Swipe to start coding

You're given a small mixed-type dataset. Build a leakage-safe preprocessing + model pipeline with scikit-learn:

  1. Split data into X (features) and y (target), then do a train/test split (test_size=0.3, random_state=42).
  2. Create a ColumnTransformer named preprocess:
    • numeric columns → StandardScaler()
    • categorical columns → OneHotEncoder(handle_unknown="ignore")
  3. Build a Pipeline named pipe with steps:
    • ("preprocess", preprocess)
    • ("clf", LogisticRegression(max_iter=1000, random_state=0))
  4. Fit on train only, then predict on test:
    • compute y_pred and test_accuracy = accuracy_score(y_test, y_pred)
  5. Add a few prints at the end to show shapes and the accuracy.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 5. Kapitel 3
single

single

some-alt