Challenge: Simulating ARIMA Processes
Swipe to start coding
Your goal is to simulate an ARIMA time series using the ArmaProcess class from statsmodels.
You will generate artificial data, visualize it, and explore how the AR (p) and MA (q) parameters affect the behavior of the series.
Perform the following steps:
-
Import the
ArmaProcessclass fromstatsmodels.tsa.arima_process. -
Define AR and MA parameters for an ARIMA(2,0,1) process:
- AR coefficients =
[1, -0.75, 0.25] - MA coefficients =
[1, 0.65]
- AR coefficients =
-
Initialize an ARMA process with these parameters.
-
Simulate 500 samples using
.generate_sample(nsample=500). -
Plot the resulting series using
matplotlib. -
Display the first 10 values of the generated time series.
Løsning
Tak for dine kommentarer!
single
Spørg AI
Spørg AI
Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat
Awesome!
Completion rate improved to 6.67
Challenge: Simulating ARIMA Processes
Stryg for at vise menuen
Swipe to start coding
Your goal is to simulate an ARIMA time series using the ArmaProcess class from statsmodels.
You will generate artificial data, visualize it, and explore how the AR (p) and MA (q) parameters affect the behavior of the series.
Perform the following steps:
-
Import the
ArmaProcessclass fromstatsmodels.tsa.arima_process. -
Define AR and MA parameters for an ARIMA(2,0,1) process:
- AR coefficients =
[1, -0.75, 0.25] - MA coefficients =
[1, 0.65]
- AR coefficients =
-
Initialize an ARMA process with these parameters.
-
Simulate 500 samples using
.generate_sample(nsample=500). -
Plot the resulting series using
matplotlib. -
Display the first 10 values of the generated time series.
Løsning
Tak for dine kommentarer!
single