Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Bag of Words | Basic Text Models
Introduction to NLP

Stryg for at vise menuen

book
Challenge: Bag of Words

Opgave

Swipe to start coding

You have a text corpus stored in corpus variable. Your task is to display the vector for the 'graphic design' bigram in a BoW model. To do this:

  1. Import the CountVectorizer class to create a BoW model.
  2. Instantiate the CountVectorizer class as count_vectorizer, configuring it for a frequency-based model that includes both unigrams and bigrams.
  3. Use the appropriate method of count_vectorizer to generate a BoW matrix from the 'Document' column in the corpus and store the result in bow_matrix.
  4. Convert bow_matrix to a dense array and create a DataFrame from it, setting the unique features (unigrams and bigrams) as its columns. Store the result in the bow_df variable.
  5. Display the vector for 'graphic design' bigram as an array.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 5
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

close

Awesome!

Completion rate improved to 3.45

book
Challenge: Bag of Words

Opgave

Swipe to start coding

You have a text corpus stored in corpus variable. Your task is to display the vector for the 'graphic design' bigram in a BoW model. To do this:

  1. Import the CountVectorizer class to create a BoW model.
  2. Instantiate the CountVectorizer class as count_vectorizer, configuring it for a frequency-based model that includes both unigrams and bigrams.
  3. Use the appropriate method of count_vectorizer to generate a BoW matrix from the 'Document' column in the corpus and store the result in bow_matrix.
  4. Convert bow_matrix to a dense array and create a DataFrame from it, setting the unique features (unigrams and bigrams) as its columns. Store the result in the bow_df variable.
  5. Display the vector for 'graphic design' bigram as an array.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

close

Awesome!

Completion rate improved to 3.45

Stryg for at vise menuen

some-alt