Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Evaluate the Model | Polynomial Regression
Linear Regression with Python
course content

Kursusindhold

Linear Regression with Python

Linear Regression with Python

1. Simple Linear Regression
2. Multiple Linear Regression
3. Polynomial Regression
4. Choosing The Best Model

book
Evaluate the Model

In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
copy

Let's build a scatterplot of this data.

12345678
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4) plt.show()
copy

Fitting a straight line to this data may not be a great choice. The price gets higher for either brand-new or really old houses. Fitting a parabola looks like a better choice. And that's what you will do in this challenge.

But before you start, recall the PolynomialFeatures class.

The fit_transform(X) method requires X to be a 2-D array (or a DataFrame).
Using X = df[['column_name']] will get your X suited for fit_transform().
And if you have a 1-D array, use .reshape(-1, 1) to make a 2-D array with the same contents.

The task is to build a Polynomial Regression of degree 2 using PolynomialFeatures and OLS.

Opgave

Swipe to start coding

  1. Assign the X variable to a DataFrame containing column 'age'.
  2. Create an X_tilde matrix using the PolynomialFeatures class.
  3. Build and train a Polynomial Regression model.
  4. Reshape X_new to be a 2-D array.
  5. Preprocess X_new the same way as X.
  6. Print the model's parameters.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 5
toggle bottom row

book
Evaluate the Model

In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
copy

Let's build a scatterplot of this data.

12345678
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4) plt.show()
copy

Fitting a straight line to this data may not be a great choice. The price gets higher for either brand-new or really old houses. Fitting a parabola looks like a better choice. And that's what you will do in this challenge.

But before you start, recall the PolynomialFeatures class.

The fit_transform(X) method requires X to be a 2-D array (or a DataFrame).
Using X = df[['column_name']] will get your X suited for fit_transform().
And if you have a 1-D array, use .reshape(-1, 1) to make a 2-D array with the same contents.

The task is to build a Polynomial Regression of degree 2 using PolynomialFeatures and OLS.

Opgave

Swipe to start coding

  1. Assign the X variable to a DataFrame containing column 'age'.
  2. Create an X_tilde matrix using the PolynomialFeatures class.
  3. Build and train a Polynomial Regression model.
  4. Reshape X_new to be a 2-D array.
  5. Preprocess X_new the same way as X.
  6. Print the model's parameters.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 5
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt