Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Label Encoding of the Target Variable | Processing Categorical Data
Data Preprocessing
course content

Kursusindhold

Data Preprocessing

Data Preprocessing

1. Brief Introduction
2. Processing Quantitative Data
3. Processing Categorical Data
4. Time Series Data Processing
5. Feature Engineering
6. Moving on to Tasks

book
Label Encoding of the Target Variable

Let's go straight to the main thing - label encoding implements everything the same as ordinal encoder, but:

  • Methods work with different data dimensions;
  • The order of the categories is not important for label encoding.

How to use this method in Python:

1234567891011121314
from sklearn.preprocessing import LabelEncoder import pandas as pd # Simple categorical variable fruits = pd.Series(['apple', 'orange', 'banana', 'banana', 'apple', 'orange', 'banana']) # Create label encoder object le = LabelEncoder() # Fit and transform the categorical variable using label encoding fruits_encoded = le.fit_transform(fruits) # Print the encoded values print(fruits_encoded)
copy
Opgave

Swipe to start coding

Read the dataset 'salary_and_gender.csv' and encode the output column 'Gender' with label encoding.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 4
toggle bottom row

book
Label Encoding of the Target Variable

Let's go straight to the main thing - label encoding implements everything the same as ordinal encoder, but:

  • Methods work with different data dimensions;
  • The order of the categories is not important for label encoding.

How to use this method in Python:

1234567891011121314
from sklearn.preprocessing import LabelEncoder import pandas as pd # Simple categorical variable fruits = pd.Series(['apple', 'orange', 'banana', 'banana', 'apple', 'orange', 'banana']) # Create label encoder object le = LabelEncoder() # Fit and transform the categorical variable using label encoding fruits_encoded = le.fit_transform(fruits) # Print the encoded values print(fruits_encoded)
copy
Opgave

Swipe to start coding

Read the dataset 'salary_and_gender.csv' and encode the output column 'Gender' with label encoding.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 4
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt