Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge | Processing Categorical Data
Data Preprocessing
course content

Kursusindhold

Data Preprocessing

Data Preprocessing

1. Brief Introduction
2. Processing Quantitative Data
3. Processing Categorical Data
4. Time Series Data Processing
5. Feature Engineering
6. Moving on to Tasks

book
Challenge

Opgave

Swipe to start coding

Here is the 'students.csv' dataset, which contains 4 columns, 3 of which are categorical. Your task is to process this dataset and encode all categorical variables.

  1. Determine for which columns to use ordinal encoding, one-hot encoding, and for which label encoding.
  2. Convert columns.
  3. Output the dataset.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 5
toggle bottom row

book
Challenge

Opgave

Swipe to start coding

Here is the 'students.csv' dataset, which contains 4 columns, 3 of which are categorical. Your task is to process this dataset and encode all categorical variables.

  1. Determine for which columns to use ordinal encoding, one-hot encoding, and for which label encoding.
  2. Convert columns.
  3. Output the dataset.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 3. Kapitel 5
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt