Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Stacking Model | Stacking and Voting Ensembles
Ensemble Learning Techniques with Python

bookChallenge: Stacking Model

Opgave

Swipe to start coding

In this challenge, you'll build a Stacking Classifier that combines different base models to improve predictive performance.

Your task:

  1. Load the Breast Cancer dataset using load_breast_cancer() from sklearn.datasets.
  2. Split the dataset into training and testing sets (test_size=0.3, random_state=42).
  3. Create a stacking ensemble with:
    • Base estimators:
      • Decision Tree (DecisionTreeClassifier(max_depth=3, random_state=42))
      • Support Vector Classifier (SVC(probability=True, random_state=42))
    • Final estimator:
      • Logistic Regression (LogisticRegression(random_state=42))
  4. Train your model on the training data.
  5. Evaluate the model on the test data using accuracy score.
  6. Print the mode's accuracy.

Løsning

Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 4. Kapitel 3
single

single

Spørg AI

expand

Spørg AI

ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

Suggested prompts:

Can you explain this in simpler terms?

What are the main points I should remember?

Can you give me an example?

close

bookChallenge: Stacking Model

Stryg for at vise menuen

Opgave

Swipe to start coding

In this challenge, you'll build a Stacking Classifier that combines different base models to improve predictive performance.

Your task:

  1. Load the Breast Cancer dataset using load_breast_cancer() from sklearn.datasets.
  2. Split the dataset into training and testing sets (test_size=0.3, random_state=42).
  3. Create a stacking ensemble with:
    • Base estimators:
      • Decision Tree (DecisionTreeClassifier(max_depth=3, random_state=42))
      • Support Vector Classifier (SVC(probability=True, random_state=42))
    • Final estimator:
      • Logistic Regression (LogisticRegression(random_state=42))
  4. Train your model on the training data.
  5. Evaluate the model on the test data using accuracy score.
  6. Print the mode's accuracy.

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 4. Kapitel 3
single

single

some-alt